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Abstract— Intelligent systems are increasingly integral to our
daily lives, yet rare safety-critical events present significant
latent threats to their practical deployment. Addressing this
challenge hinges on accurately predicting the probability of
safety-critical events occurring within a given time step from
the current state, a metric we define as “criticality”. The
complexity of predicting criticality arises from the extreme
data imbalance caused by rare events in high dimensional
variables associated with the rare events, a challenge we
refer to as the curse of rarity. Existing methods tend to be
either overly conservative or prone to overlooking safety-critical
events, thus struggling to achieve both high precision and
recall rates, which severely limits their applicability. This study
endeavors to develop a criticality prediction model that excels
in both precision and recall rates for evaluating the criticality
of safety-critical autonomous systems. We propose a multi-
stage learning framework designed to progressively densify the
dataset, mitigating the curse of rarity across stages. To validate
our approach, we evaluate it in two cases: lunar lander and
bipedal walker scenarios. The results demonstrate that our
method surpasses traditional approaches, providing a more
accurate and dependable assessment of criticality in intelligent
systems.

I. INTRODUCTION

Intelligent systems are playing an increasingly significant
role in our daily lives. Safety-critical autonomous systems are
the intelligent systems whose failure will cause considerable
losses of human life and property, such as autonomous
vehicles, robotics, and intelligence medical diagnosis system
[1]–[3]. Given the potential catastrophic consequences, it is
imperative to guarantee these systems operate safely and
effectively for practical deployment.

To address the aforementioned challenges, the key lies
in precisely predicting the probabilities of safety-critical
events associated with their failures within a given time
step from current state, a metric we refer to as “criticality”.
These events may span from a traffic accident involving
an autonomous vehicle to a robot tipping over. Previous
criticality prediction methods can be broadly categorized into
metrics-based methods and model-based methods.
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The metrics-based criticality prediction methods rely on
specific metrics designed to directly quantify risk, for in-
stance the well-known Time To Collision (TTC) metric used
in automated driving to assess the probability of collision
[4]–[6]. However, these metrics may not always yield precise
results, and formulating appropriate metrics in complex
systems can be a challenging task. In such scenarios, pre-
dictive models trained on data have emerged as a viable
alternative. Although criticality prediction models have gar-
nered significant attention in the field of disease diagnosis
[7]–[9], achieving precise predictions remains exceptionally
challenging.

In this study, we aim to develop a criticality prediction
model for intelligent systems that achieves both high pre-
cision and recall rates. A high recall rate is essential to
reduce missed alarms, ensuring that all safety-critical events
can be identified and timely measures can be taken to avert
potential safety hazards. A high precision rate helps mitigate
false alarms, preventing the systems from being overly
conservative. The primary challenge arises from the rarity of
safety-critical events in high-dimensional scenarios , often
referred to as the “curse of rarity” [10]. This rarity results
in an extremely imbalanced dataset, presenting significant
obstacles in learning a well-performed model.

A long line of work have been proposed to overcome the
imbalanced dataset issues. One popular approach is data re-
sampling strategies, which often have difficulties in learn-
ing robust and generalizable features. The over-sampling
method [11]–[13] can lead to overfitting on the minority
class, while the under-sampling method [14], [15] may cause
significant information loss in the majority class, leading to
underfitting. Another approach is data re-weighting method
[16]–[21], where different weights are adaptively assigned
to different classes or samples. Nonetheless, a potential
problem is that the classifier may converge to a local optimal
solution if the batches are dominated by majority class
samples. These methods often yield a considerable number
of false alarms, thereby resulting in a low precision rate. Re-
cently, researchers have introduce decoupling method, meta-
learning, transfer learning and contrastive learning [22]–
[27] to enhance imbalanced learning. However, despite these
efforts, existing approaches have struggled to obtain models
with high precision and recall rate when confronted with
extremely imbalanced testing dataset.

To effectively resolve such issues, we propose a multi-
stage learning framework that gradually densifies the dataset
and alleviates the degree of imbalance. As illustrated in
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Fig. 1. Overview of the multi-stage learning framework. Our approach consists three stages. In the first stage, we remove those obvious non-critical
samples and reduce imbalance ratio by unsupervised learning. Then in the second stage, we use labeled data to train a supervised classification model to
further categorize those samples unable to be distinguished by unsupervised learning model. Lastly, in the third stage, we turn to improve the accuracy
of predicted criticality other than continuously focusing on unclassified samples. Dense DQN method is developed to fine-tune last layers of classification
model.

Fig. 1, in the first stage, we employ unsupervised learning
methods to filter out “easy” negative samples, the criticality
of which is considered to be zero. Subsequently, in the
next stage, we turn to supervised learning and the enhanced
bilateral-branch network (BBN) [28] is designed to perform
more fine-grained classification task. Intuitively, samples
difficult to classify in one feature space may become easier to
separate in another space. By combining supervised and un-
supervised methods, samples are projected into different state
spaces for classification, enabling a coarse-to-fine identifica-
tion of safety-critical events. Eventually, dense reinforcement
learning method [29] is introduced to further improve the
precision of predicted criticality. The effectiveness of dense
reinforcement learning stems from the utilization of a more
balanced gradient to fine-tune classification model in the
second stage.

To evaluate the effectiveness of our proposed method,
we conducted experiments in two different scenarios and
compared our approach with classical methods. The results
demonstrate that our predictive model achieves high preci-
sion and recall rate, outperforming traditional approaches.
Our contributions can be summarized as follows:

• To address the challenges posed by the curse of rarity,
we develop a multi-stage learning framework to learn
criticality prediction models with high precision and
recall rate by progressively mitigating the imbalance
ratio and enhancing accuracy.

• Our method exhibits applicability to real-world scenar-
ios featuring extremely imbalanced test datasets, with
an imbalance ratio exceeding 104.

The rest of this paper is organized as follows. The problem
of criticality prediction is formulated in Section II. Our
approach and algorithms are described in Section III. In

Section IV, we analyze experiment results. Finally, Section
V summarizes our proposed method and prospects for future
work.

II. PROMBLEM FORMULATION

In this section, we formulate the problem of criticality
prediction. If we denote a critical event as A and the state
of systems and environment as X , the task of criticality
prediction essentially involves estimating the conditional
probability P(A|X). The criticality prediction we study in
this work is in essence a rare-event probability estimation
problem in a high-dimensional space due to the curse of
dimensionality and the curse of rarity. The curse of di-
mensionality refers that state X is spatially and temporally
complex, requiring numerous high-dimensional variables for
accurate representation. The “curse of rarity”, which is the
primary source of our challenges, refers to the infrequent
occurrence of the critical event A. This rarity implies that the
majority of points within the variable space do not represent
critical situations, leading to unreliable and noisy data.

Firstly, we formulate the problem of criticality prediction
as a classification task. The objective is to train a classifica-
tion model that can accurately determine whether a critical
event A will occur given the current state X of the system.
To this end, suppose we have a dataset D containing N
samples {Xk,Yk}Nk=1. Each sample Xk comprises the state
of the intelligent system and its surrounding environment.
The corresponding label Yk are binary, taking values from
{0, 1}. These data is labeled by

Yk = IA(Xk), (1)

where Yk = 1 if the critical event A occurs within a certain
time step given the state Xk and Yk = 0 otherwise.
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Fig. 2. Structure of reward model in stage one. The reward model is
composed of the backbone and linear layer mapping features to a scalar r.
Positive and negative sample pairs are taken as input. The model is trained
to obtain higher r for positive samples than negative samples.

We define positive dataset P and negative dataset N as
follows

P = {(X, y) ∈ D|y = 1}, (2)

N = {(X, y) ∈ D|y = 0}, (3)

In this study, the positive class refers to the minority class.
For extremely imbalanced datasets, the number of samples
belonging to the positive class ( |P|) is significantly smaller
than the number of samples belonging to the negative class
( |N |). To quantify the degree of imbalance, the imbalance
ratio (IR) is introduced, defined as

IR =
|N |
|P|

. (4)

The imbalance ratio studied in this work exceeds 104, a
magnitude considerably higher than most existing studies.
Such extreme class imbalance can cause the classifier to
exhibit significant bias toward the negative class, resulting
in a high false positive rate. The probability predicted by
the classification model that a sample X belongs to positive
class serves as an estimation of criticality P(A | X) .

III. METHODS

In this section, we propose a multi-stage training frame-
work to progressively densify the dataset and alleviate the
degree of imbalance, which consists of three stages. In the
first stage, we utilize unsupervised learning model to pre-
identify those non-critical negative samples. In this way, we
can effectively reduce the imbalance ratio. In the second
stage, labeled data is leveraged to train a classification
model capable of further distinguishing between positive
samples and hard negative samples. Finally, in the third stage,
we employ dense reinforcement learning to improve the
accuracy of criticality predicted by the classification model.

A. Stage One: Ranking Loss Based Unsupervised Learning

When confronted with a scarcity of positive samples,
effectively capturing their distribution becomes a challenging
task. In such scenarios, some approaches exploit anomaly
detection to learn the distribution of negative samples and
identify samples that deviate from this distribution as po-
tential positive instances [30]. In this work, we leverage
self-supervised learning to train a reward model. This model
aims to increase the distance between positive and negative
samples in the feature space. By doing so, we can identify
samples that exhibit clear non-critical characteristics. Free
from the influence of “label bias” [31], the reward model
can learn more robust features.

Fig. 2 illustrates the architecture of reward model rθ.
During the training phase, the model takes pairs of positive
and negative sample (xpi,xni) as input. The objective of this
reward model is to assign a scalar r to each input sample,
with the purpose that positive samples get higher scores than
negative ones. The loss function is defined as follows:

L(θ) = −EXp∼P,Xn∼N [log σ(rθ(Xp)− rθ(Xn))] , (5)

where Xp represents the positive samples and Xn denotes
the negative samples. σ denotes the sigmoid function. This
loss function is widely utilized in the training of large
language model (LLM) to obtain a reward model that scores
the response of the LLM.

Our model essentially learns a mapping relationship be-
tween the feature space and the scalar space. By selecting
appropriate threshold ϵ1 and ϵ2, we can effectively identify
the “easy” negative samples or certainly non-critical samples,
while retaining the positive samples. This means that a
sample x is considered positive if ϵ1 < rθ(x) < ϵ2 and
negative otherwise. Since our aim is to improve precision
rate without compromising recall rate, the threshold ϵ1 and
ϵ2 must guarantee that most positive samples are retained.

In addition, although performance of the reward model
maybe affected by the extent of class overlap, employing
unsupervised models allows us to substantially decrease the
number of negative samples, thereby reducing the imbalance
ratio of dataset.

B. Stage Two: Enhanced BBN based Supervised Learning

In the second stage of our framework, we employ super-
vised learning to train a classification model. It is worth
noting that in this stage, our positive dataset P includes
all positive samples utilized in the first stage. In contrast,
our negative dataset N− exclusively comprises false positive
samples indentified in the first stage. We adopt a more com-
plex model as the difficulty of samples increases compared
to the first stage.

Inbalanced test dataset poses greater challenges for learned
representation, and common rebalancing strategies such as
re-sampling and re-weighting are often detrimental to feature
learning. Intuitively, random sampling might lead to better
representations. To address this issue, we develop an en-
hanced BBN method to improve the representation learning.
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Fig. 3. Structure of enhanced BBN in stage two. The upper branch focus on the representation learning of positive samples with class-balanced sampling
and focal loss, while the lower branch focus on the representation learning of negative samples by uniform sampling and cross-entropy loss. Then features
is mixed with adaptive parameter a. Finally a normalized classifier is adopted to mitigate the model’s preference for negative samples.

As depicted in Fig. 3, in the upper branch, we utilize class-
balanced sampling to focus on learning representations of
positive samples, since inverse sampling strategy adopted in
original BBN leads to high false positive rate on imbalanced
test dataset. Simultaneously, in the lower branch, we employ
random sampling to extract features from negative samples.
The features from both branches are then combined as
follows:

z = αWT
a fa + (1− α)WT

b fb, (6)

where z represents the mixed feature representation, α is
an adaptive hyper parameter controlling the mixing ratio
and we also use the parabolic decay strategy [28]. Wa and
Wb are the weight matrices for the respective branches, and
fa and fb are the extracted features. Empirical observations
suggest that the positive class tends to have larger classifier
norms [32]. To mitigate the classifier’s bias toward the
majority class, we adopt a normalized linear classifier. This
normalization ensures that the classifier’s weights are scaled
to have unit norm, effectively balancing the influence of
different classes. The normalized weights are computed as

ŵi =
wi

||wi||T
, (7)

where ŵi represents the normalized weight and wi is the
original weight. The loss function is given by:

L = αLa(p,ya) + (1− α)Lb(p,yb), (8)

where p represents logits of classification model, and ya

and yb are the corresponding labels for the two branches.
La is the focal loss to further enhance feature learning of
positive samples, and Lb is the cross-entropy loss. Using
the enhanced BBN, we can further categorize samples that
failed to be distinguished in the first stage. As the imbalance
ratio decreases, the difficulty of training in this stage can be
mitigated.

C. Stage Three: Dense Reinforcement Learning

Since our primary objective is to achieve precise criticality
predictions, our focus in this stage shifts from continuously

categorizing those hard or even non-separable samples to
fine-tuning the classification model to further improve the
accuracy of criticality assessments. Specifically, we employ
dense reinforcement learning [29] to fine-tune the last layers
of classification model in stage two, including the class head
and classifier.

In reinforcement learning, the value of each state-action
pair, denoted as Q(s,a), represents the expected return
obtained by executing action a in state s. To learn the Q-
value, we utilize a dense deep Q-learning (DQN) approach,
where the classifier serves as the Q-network and the predicted
criticality represents the Q-value

Q(s,a) ≜ P(A|s,a) = P(A|X). (9)

In practical applications, we introduce historical states to
enrich the input information for improved classification accu-
racy. Consequently, the input X in previous stages contains
not only s and a at current step but also previous states.
For simplicity, we represent the input X as (s,a) in the
rest of the paper. We adopt an offline training approach for
efficiency.

The term “dense” refers to our use of critical episodes
only for training Q-network. An episode, denoted as
(si1, si2, ..., sit), is considered critical if a critical event A
occurs at sit. According to our definition of train dataset D,
the state sit is a positive sample and sij for j = 1, ..., t− 1,
are negative samples. Additionally, states belonging to non-
critical episodes are also considered as negative samples.
This allows us to focus on the most relevant and informative
data for fine-tuning the classifier. Our reward function is
defined as follows

r(s) = IA(s), (10)

where r = 1 if at state s critical event happen and 0
otherwise. This reward function encourages the Q-network to
assign higher Q-values to states that lead to critical outcomes.
The Q-network is updated according to the following loss
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function

L(θk) =
∑

(s,a,r,s′)∈D

(y −Q(s,a;θk))
2Is∈Sc , (11)

where y = r + γmaxa′ Q(s′,a′;θk−1) and Sc denotes the
set of states belonging to critical episodes.

By employing dense DQN, we can optimize the criticality
predicted by classifier. Due to the large of number of negative
samples, the gradients are dominated by negative samples,
leading to the classifier biased toward the negative class [33].
With dense DQN, we are able to fine-tune classification
model with more balanced gradient. The derivative of the
loss function is

∇L(θk)
∇θk

= −2
∑

(s,a,r,s′)∈D

(y−Q(s,a;θk))
∇Q(s,a;θk)

∇θk
Is∈Sc

(12)
Then the loss function L(θk) can be reformulated as

the sum of the positive class loss function Lp(θk) and the
negative class loss function Ln(θk), we have

∇L(θk)
∇θk

=
∇Lp(θk)

∇θk
+

∇Ln(θk)

∇θk

= 2

Np∑
i=1

(fθk
(si,ai)− 1)

∇fθk

∇θk
+

2

N ′
n∑

j=1

(fθk
(sj ,aj)− γmax

a′
j

fθk(s
′
j ,a

′
j))

∇fθk

∇θk

(13)
where fθk

is the classification model. We can observed that
Np equals |P| and the number of negative samples N ′

n ≪
|N| due to the dense method. Therefore, in comparison to
the second stage, we further alleviate the impact of negative
samples on the loss function. This helps in reducing the
classifier’s preference for negative samples and improving
the precision of criticality.

IV. RESULTS

In this section, we applied our approach to two well-known
cases: Bipedal Walker and Lunar Lander, both of which
are tasks under the Gym environment. Next, we provide a
brief overview of each case and present the corresponding
ROC curves and Precision-Recall curves. Eventually, abla-
tion studies are performed to verify the effectiveness of each
components of our method.

(a) Case of lunar lander (b) Case of bipedal walker
Fig. 4. Overview of cases

A. Overview of Cases

In the lunar lander case, as shown in Fig. 4(a), a rocket is
optimized to achieve a safe touchdown on the landing pad,
avoiding any potential crashes. The criticality event A occurs
when the lander gets in contact with the moon. A well-
trained rocket using PPO algorithm was utilized to collect
the training dataset. Considering information related to the
rocket’s state and atmospheric conditions, the input feature
Xk is defined as

Xk = (sk−10, .., sk−1, sk), (14)

where sk ∈ R11 represents the state at step k, and
sk−10, ..., sk−1 represent historical states. The state sk con-
sists of both the rocket’s state skr and the environment’s
state ske, where skr includes the rocket’s coordinates, linear
velocities, angles, angular velocity, along with two boolean
values indicating whether each leg is in contact with the
ground. Additionally, skr includes the force of linear wind
and rotational wind. If critical event occurs at terrain sk, the
sample xk is labeled as a positive sample (yi = 1). The
original train and test dataset exhibit an imbalanced ratio of
1.26× 104.

In the bipedal walker case, as shown in Fig. 4(b), a four
joint walker must navigate through a series of obstacles,
including stumps and pitfalls, to reach its destination. The
criticality event A is defined as the hull of walker contact
with the ground without achieving a predefined distance.
Utilizing the POET [34] algorithm, a well-trained walker was
developed. The input feature Xk is

Xk = (sk0, sk1, sk2, ..., sk9), (15)

where sk0 ∈ R25 represents the walker’s state, including
hull angle speed, angular velocity, horizontal speed, vertical
speed, position of joints and joints angular speed, legs contact
with ground, and lidar measurements. ski ∈ R8 represents
terrain within the detection range of lidar. If the critical event
occurs at terrain sk9, the sample Xk is considered as positive
sample with yk = 1. The imbalanced ratio of train and test
dataset approaches 1.56× 104.

B. Results

For the Lunar Lander case, in the first stage, a 6-layer
transformer serves as the backbone of our reward model.
As depicted in Fig. 5(a), orange points represent results
of positive samples, while blue points represent results of
negative ones. The dashed lines indicate the thresholds we
select. We manage to delete 95.02% negative samples and
identify 99.27% positive samples with ϵ1 = 5 and ϵ2 =
+∞. The backbone used in the second stage is identical
to that of reward model. Using both the reward model and
classification model, we can achieve improved identification
rates, 98.41% for negative samples and 99.13% for positive
samples, as well as the AUC of 0.9612. Finally, dense DQN
leads to a further improvement: 99.06% for negative samples
and 99.18% for positive samples, resulting in AUC increase
to 0.9853.
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(a) Results of lunar lander case (b) Results of bipedal walker case
Fig. 5. Outputs of reward model

(a) ROC curve of lunar lander case (b) ROC curve of bipedal walker case

(c) RR curve of lunar lander case (d) PR curve of bipedal walker case
Fig. 6. ROC curves and Precision-Recall curves of supervised classification model and dense DQN fine-tuned model

For the bipedal walker case, in the first stage, a 6-layer
transformer serves as backbone of our reward model. As
shown in Fig. 5(b), by selecting the thresholds of 4.2 and
6.8, we can eliminate 79.35% negative samples and identify
87.60% positive samples. Then, benefiting from classification
model, we can identify 88.72% negative samples and 90.12%
positive samples and the AUC is 0.6752. By employing dense
DQN, we can identify 91.66% negative samples and 93.09%
positive samples and the AUC is 0.7163.

As illustrated in Fig. 6, we compared our method with
traditional approaches including original BBN [28], class-
balanced sampling (CBS) [18] and decoupling method [22].
It is evident that those classical methods mentioned above
may not be effective when dealing with extremely imbal-

ance test dataset. Additionally, removing certain non-critical
samples with unsupervised learning stage proved beneficial
in improving identification rates. Furthermore, it can also
be demonstrated that performance gains further improvement
with dense DQN.

V. CONCLUSIONS

In conclusion, our study focuses on developing a criticality
prediction model for intelligent systems that achieved both
high precision and recall rates. To address the challenge of
curse of rarity, we propose a multi-stage learning framework,
which gradually densifies the dataset and alleviates the
degree of imbalance through a combination of unsupervised
learning and reinforcement learning methods. Our research
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provides valuable insights into the criticality prediction of
intelligent systems, thus facilitating their development and
real-world deployment. In the future, we will delve deeper
into the theoretical underpinnings of our proposed method
and determine the imbalance ratio for which it is applicable.
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