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Abstract—Testing and evaluating the safety performance of
autonomous vehicles (AVs) is essential before the large-scale
deployment. Practically, the number of testing scenarios per-
missible for a specific AV is severely limited by tight constraints
on testing budgets and time. With the restrictions imposed by
strictly restricted numbers of tests, existing testing methods
often lead to significant uncertainty or difficulty to quantifying
evaluation results. In this paper, we formulate this problem
for the first time the “few-shot testing” (FST) problem and
propose a systematic framework to address this challenge. To
alleviate the considerable uncertainty inherent in a small testing
scenario set, we frame the FST problem as an optimization
problem and search for the testing scenario set based on
neighborhood coverage and similarity. Specifically, under the
guidance of better generalization ability of the testing scenario
set on AVs, we dynamically adjust this set and the contribution
of each testing scenario to the evaluation result based on
coverage, leveraging the prior information of surrogate models
(SMs). With certain hypotheses on SMs, a theoretical upper
bound of evaluation error is established to verify the sufficiency
of evaluation accuracy within the given limited number of
tests. The experiment results on cut-in scenarios demonstrate
a notable reduction in evaluation error and variance of our
method compared to conventional testing methods, especially
for situations with a strict limit on the number of scenarios.

Index Terms—Few-shot testing, autonomous vehicles, sce-
nario coverage, testing scenario set

I. INTRODUCTION

The fast development and experimental application of
high-level autonomous vehicles (AVs) on open road have
brought about the crucial need and emerging research in-
terests [1]–[3] on testing and evaluating their safety perfor-
mance to facilitate the large-scale deployment. However, with
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seemingly endless traffic scenarios in real world [4] and the
low efficiency of testing rare events (e.g. crashes) [5], the
available testing budget is far from meeting the practical
requirements. Consequently, how to generate reliable testing
and evaluation results within the confines of a restricted limit
of testing number becomes a significant problem.

In practical terms, the acceptable budget of testing specific
AV model can be restricted within an extremely small limit.
For third-party testing organizations and governmental bod-
ies, the generation of an extensive array of testing scenarios
for all potential AV models, particularly during open road
testing, is not pragmatic. Besides, with the rapid iterative
development of autonomous driving technique, conducting a
thorough evaluation of AV performance within the research
and development cycle becomes increasingly infeasible. Con-
sequently, there exists a compelling need to generate quickly
the accurate evaluation results of AV using the smallest
possible testing numbers or within a strictly limited set of
scenarios. Moreover, the quantitative and explainable results
are needed as a foundational benchmark for comparing the
performance of diverse AVs, which create additional diffi-
culties for testing with limited costs. Remarkably, we term
this problem the “few-shot testing” (FST) problem in this
paper, marking the first instance of defining and addressing
this specific issue to the best of our knowledge.

Although a lot of efforts have been made to search for a
smaller testing scenario set or accelerated tests, the problem
of FST remains unsolved. As a practical method, some au-
tonomous driving companies keep a scenario set from logged
data or expert knowledge to verify the reliability of their
AVs before on-road deployment [6]. Searching for critical
scenarios is a commonly used scheme to generate a smaller
testing scenario set [7]. Based on knowledge [8], scenario
clustering [9], [10], scenario coverage [11], optimization
strategy [12], [13] or some well-designed models [14]–[17],
many methods are capable of generating a representative
scenario set with certain risks. However, the efficiency of
these methods is usually measured by the proportion of
critical scenarios or some pre-defined reasonable criteria. The
quantitative result for the performance index of AV is hard
to be acquired.

Statistical methods represent an effective approach for
quantifying the performance index of AV model while gen-
erating critical scenarios to accelerate the testing process
[18]–[24]. Based on naturalistic driving data (NDD) and
naturalistic driving environment (NDE), the performance of
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AVs can be estimated with a critical distribution. However,
although unbiased results can be acquired through sampling,
many critical scenarios may be similar or reduplicative. Ad-
ditionally, controlling the testing variance in a smaller test set
becomes challenging due to uncertainty, thereby diminishing
the effectiveness of these methods in FST scenarios.

In this paper, we propose systematically the FST frame-
work to tackle the problem of quantifying the performance of
AV with smallest possible or strictly limited numbers of test.
Meanwhile, A testing error bound with regard to the restricted
number of testing scenarios can be derived to verify the
accuracy of FST method. In order to maintain the theoretical
advantages and quantify the performance indices of AV,
we generate testing scenarios based on NDD and NDE.
Furthermore, to mitigate the large uncertainty of NDE-based
statistical methods associated with the restricted numbers of
test, we frame the FST problem as an optimization problem
and iteratively search for FST scenario set for an accurate and
reliable testing and evaluation result. In the context of fixed
few-shot scenarios and an unknown AV model before testing,
the essence of FST method lies not in the direct selection of
critical scenarios but in identifying a set of scenarios with
optimal generalization ability based on SMs. This is similar
to the generalization ability concept employed in classic few-
shot learning methods [25], [26].

Following the basic idea of FST framework, we introduce a
dynamic neighborhood coverage set and a similarity measure-
ment for scenarios in the test set. According to the limit on
numbers of testing scenarios and specific scenario samples,
the confidence and coverage of scenarios are dynamically
adjusted in the optimization process under the guidance of
the generalization ability or the estimation error bound. With
the gradient descent method, a fixed small set of scenarios
can be selected with a minimized upper bound of error. The
performance index of real AV model could be quantified
with definite accuracy with some hypothesis on SMs. In
order to validate the FST method, we conducted a case
study in the cut-in scenario. Compared with commonly used
testing methods, the average error and variance of FST is
significantly smaller. Notably, we find that the accuracy of
FST method is less impaired with a smaller size of testing
set compared with the other methods.

The remainder of the paper is organized as follows: Section
II and III provide the basic formulation for the FST problem
and a comprehensive presentation of our detailed FST frame-
work; Section IV validates the effectiveness of proposed FST
method in the cut-in scenario; Finally section V concludes
the paper.

II. PROBLEM FORMULATION

A. Performance Index Quantification with NDE

The modeling of scenarios and environments constitutes a
fundamental aspect of autonomous vehicle (AV) testing and
evaluation. As mentioned above, a commonly used method
for driving environment modeling is the NDE based on NDD,
which is defined as follows.

Let x denote a scenario including all spatio-temporal vari-
bles relevant to testing requirements (e.g. position, velocity
of vehicles at a specific moment or in a period of time) and
we have

x ∈ X , (1)

where X is the set of all possible scenarios. With statistics
given by NDD, the probability measure of specific scenario
can be derived as p(x), x ∈ X , which is the exposure
frequency of the scenario in real world. Define X as the
corresponding random variable and then we have X ∼ p(x).
Provided that A is the event of interest during testing (usually
crashes for AVs), the performance index of AVs can be
calculated as

µ = P (A) = Ep[P (A|X)]

=
∑
x∈X

P (A|x)p(x), (2)

where µ = P (A) is the performance index with respect to
event A in NDE and P (A|x) is the performance measure of
the vehicle under test in the scenario x.

B. Statistical Testing Problem

Classic statistical methods evaluate the performance in-
dex of AV by sampling a set of scenarios Xs ≜ {xi ∈
X , i = 1, 2, ...}. Then µ can be estimated by testing AV
performances on xi as P (A|xi). Crude Monte Carlo (CMC)
[27] method is extensively adopted to test AVs in NDE. The
strategy for CMC to quantify µ is

µ̃CMC =
1

n

n∑
i=1

P (A|xi), Xi ∼ p(x), (3)

where Xs is generated from natural distribution p(x) of NDE
and n could increase dynamically throughout the testing
procedure. When A denotes crashes, the crash rate of AV
is generally a tiny value and CMC faces the problem of
“curse of rarity”, which results in extremely low efficiency
and accuracy [5]. Consequently, it is practically impossible
to evaluate AVs with CMC coupled with a small number of
tests.

Towards addressing this issue, importance sampling (IS)
is proposed to accelerate the testing process [18], [21], [22],
the strategy for IS to quantify the crash rate is

µ̃IS =
1

n

n∑
i=1

P (A|xi)
p(xi)

q(xi)
, Xi ∼ q(x), (4)

where Xs is generated from an important distribution q(x).
The testing efficiency of IS can be much higher than CMC
under ideal condition. However, in practice the estimation
result of IS could not converge to an accurate value for a
strictly limited number of tests.

C. Few-Shot Testing Problem

In this paper, we focus on the situation where a limited
size of scenario set Xs is given as n, denoting Xs,n ≜ {xi ∈
X , i = 1, 2, ..., n}. As n is a small number (e.g. n = 5, 10),
our primary emphasis is on the estimation error caused by
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specific testing set Xs,n and the goal is to minimize the
evaluation error on specific AV model, that is

min
Xs,n

E = |µ̃− µ|, (5)

where µ̃ is the estimation result. Similar to other testing
methods, we obtain P (A|xi) by testing AV performance of
scenarios xi. Additionally, we extend the estimation strategy
Eq. (3-4) to a general form

µ̃ = f(P (A|x1), ..., P (A|xn)), (6)

where f is any possible estimation strategy leveraging n
AV testing performances P (A|xi), i = 1, ..., n. Combining
Eq. (5) with Eq. (6), we have the standard form for few-shot
testing problem as

min
Xs,n

E = |f(P (A|x1), ..., P (A|xn))− µ|. (7)

Statistical testing methods like CMC and IS have the-
oretical benefits that the estimation is unbiased. However,
as scenarios are sampled from probabilistic distribution, the
uncertainty is hard to be controlled with few testing numbers
and the estimation errors is possible to be a large value. In
Eq. (7), all relevant notations are fixed value but not random
variables, so the uncertainty of sampling is eliminated.

Towards solving the problem in Eq. (7), there are still
several challenges remaining:

(1) The estimation function f is extremely flexible, which
calls for a concrete and effective estimation strategy;

(2) As P (A|xi) is obtained for specific AV model and µ
is the ground truth of performance index for this AV, the
optimal solution of Eq. (7) is relevant to the unknown AV
model under test;

(3) If we have an approximation of P (A|xi) or µ before
testing, the unknown gap between real AV model and the
approximation may directly affect the estimation error and
result in a low accuracy.

III. FEW-SHOT TESTING FRAMEWORK

A. Upper Bound of Estimation Error

AV plays an important role in the formulation (7). Because
we do not know the information of AV model before testing,
we use the surrogate models (SMs) to represent for the prior
information of AV. Note that the generated FST scenario set
Xs,n is fixed after the optimization is finished, but there
are diverse possible AV models for test. Because the error
between SMs and AVs under test may directly affect the
estimation error, we suppose the information of SMs form a
set Xs,n. For each possible SM mi ∈ M, the performance
measure Pi(A|x) could be tested and acquired. Subsequently,
under the hypothesis that real AV model satisfies m∗ ∈ M,
the fixed error can be further written as an error bound

E ≤ max
mi∈M

|µ̃i − µi|, (8)

where µ̃i and µi is the crash rate and estimation of crash rate
of mi, respectively:

µ̃i = f(Pi(A|x1), ..., Pi(A|xn)), µi = Ep[Pi(A|X)]. (9)

The hypothesis m∗ ∈ M is not such strong because we can
expand the set M by introducing noises so that the real AV
model can be covered. With a more deterministic SM set M,
the relationship of Eq. (8) is more compact and vice versa.
With this scheme, we transform the optimization problem
into minimizing a upper bound of error. The set of scenarios
Xs,n target at the best generalization ability among AVs and
thus ensuring the few-shot accuracy.

However, in case that the unknown information can not be
completely covered with certain noises, namely m∗ /∈ M, the
error bound could be extended for further analysis. Suppose
that m∗ could be decomposed into m′+∆m where m′ ∈ M,
by applying Eq. (8) in m′ we have the extended error bound

E ≤ max
mi∈M

{|µ̃i − µi|}+ |∆µ̃−∆µ|

≤ max
mi∈M

{|µ̃i − µi|}+ |∆µ̃|+ |∆µ|.
(10)

With these upper bounds of estimation error, the estimation
strategy for µ̃ could be designed.

B. Coverage and Similarity-Based Estimation Strategy

As stated in section II-C, the form of estimation function
f is extremely flexible. In this paper, we deal with f using
a weighted sum of testing results on all scenarios as

f(P (A|x1), ..., P (A|xn)) =

n∑
i=1

P (A|xi)w(xi;Xs,n), (11)

where w(xi;Xs,n) is the weight function of each scenario
sample xi and we suppose that

∑n
i=1 w(xi;Xs,n) = 1.

Note from Eq. (11) that there is w(xi;Xs,n) = 1/n for
CMC method and w(xi;Xs,n) = p(xi)/[nq(xi)] for IS
method. Traditional weight functions are determined only by
certain sample xi and the size of test set n hence lacking
the global perspective. Besides, the Xs,n is sampled based
on distributions, which brings about large uncertainty. By
making use of a relatively flexible form of weight functions
and test set, the few-shot accuracy may be guaranteed.

Now we come to the discussion on the weight function.
Following the idea of fully utilizing each valid testing sce-
nario and avoiding redundant information, we want to take
advantage of the concept of scenario coverage. The coverage
of a scenario is hopeful to be a reliable measurement of its
contribution to the evaluation result. Coverage is a commonly
used and effective approach to verify the performance of
AVs [28]. Experientially and intuitively, the similarity among
scenarios allows us to utilize the performance of AV in a rep-
resentative scenario as an approximation of its neighborhood.

Usually the coverage of scenario is deterministic with
some pre-determined rules or models [29], [30]. As FST
method aims at evaluating the performance of AV under
fixed size of test set, the accuracy and expected contribu-
tion of each scenario sample for FST should change along
with the size of test set. Therefore, we propose a dynamic
neighborhood coverage set to adjust the relative coverage of
scenarios selected for test dynamically with respect to Xs,n.
The coverage of one sample xi ∈ Xs,n is decided by the
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similarity between all scenarios in the scenario space and
the test set Xs,n. We define the coverage set of xi by

C(xi;Xs,n) ≜

{
x′| argmax

j=1,...,n
S(x′, xj) = i

}
, (12)

where S(x′, x) is a similarity measurement which can be
defined as the inverse of normalized Euclidean norm for
simplicity

S(x′, x) ≜
1

||x− x′||2
. (13)

By adopting this brief form of similarity measurement, the
boundary of coverage sets is actually a separate hyperplane
in the scenario space. Then the weight of xi is computed
with the sum of all scenarios in its coverage set weight by
exposure frequency

w(xi;Xs,n) =
∑

x∈C(xi;Xs,n)

p(x). (14)

With the definition of coverage set and weight function,
the estimation µ̃ is continuous providing the continuity of
scenario space X, p(x) and performance measure function
P (A|x). With this property it is easy to prove that for specific
AV model m∗ and n ≥ 2, the optimal estimation error µ̃
is 0 by selecting optimal Xs,n. This ensures the theoreti-
cal optimality of FST method with exactly accurate prior
knowledge. Specifically, the real-world scenario variables are
usually continuous but the discretization precision may affect
the optimality to some extent.

C. Optimizing for a Few-Shot Scenario Set

Eventually with the information of SMs set M, the gradi-
ent descent method is conducted to search for a optimal test
set Xs,n and dynamically adjust coverage of samples xi in
each iteration. By directly applying the error upper bound in
Eq. (8), we write the objective function for optimization as

min
Xs,n

J(Xs,n)

s.t. J(Xs,n) = max
mi∈M

|µ̃i − µi|,
(15)

where µ̃i is calculated with Eq. (11)-(14).
With the extended upper bound of error in Eq. (10), we can

see that ∆µ = Ep[∆Pi(A|X)] is the unknown overall gap
between real AV model and SM set. This item is irrelevant
to the estimation strategy f or scenario samples Xs,n and
is impossible to be eliminated. Therefore, we focus on the
additional part |∆µ̃| in Eq. (10), which can be written as

|∆µ̃| =

∣∣∣∣∣
n∑

i=1

∆P (A|xi)w(xi;Xs,n)

∣∣∣∣∣ . (16)

|∆µ̃| represents for the gap between SM and AV at specific
sample xi and it means that the information of SM at sam-
pled scenarios should be accurate, particularly at significant
scenarios with large weight w(xi;Xs,n).

Fig. 1: Cut-in scenario.

As P (A|xi) is undiscovered before testing, we propose the
coverage fluctuation estimator to approximate the potential
error ∆P (A|xi) of scenarios in the test set Xs,n, defined by

F (xi;Xs,n) ≜

∑
x∈C(xi)

[P ′(A|x)− P ′(A|xi)]p(x)S(x, xi)∑
x∈C(xi)

p(x)S(x, xi)
.

(17)
This fluctuation estimator is the summation of differences
between xi and scenarios in its coverage set weighted by the
similarity measurement and exposure frequency. It is prac-
tically effective that if a scenario has significant differences
with another one that is identified as similar, the underlying
uncertainty should be taken into consideration.

Replacing ∆P (A|xi) in Eq. (16) with the fluctuation
estimator, substituting it in to Eq. (18) and ignoring the
constant part, the optimization principle is rewritten as

min
Xs,n

J(Xs,n)

s.t. J(Xs,n) = wM max
mi∈M

{|µ̃i − µi|}

+

n∑
i=1

F (xi;Xs,n)w(xi;Xs,n).

(18)

Note that wM is our confidence parameter on the prior
knowledge provided by SMs. If the AV model is predictable
with the assistance of SMs, wM is supposed to be set to
+∞ and the objective function in Eq. (18) degrades into
Eq. (15). The gradient descent method is also applicable with
this additional form.

By leveraging scenario coverage and similarity, FST
method is capable of selecting optimal test set with an upper
bound of error. When the unknown gap between AV and SMs
can not be neglected, additional error caused by scenarios
selected can also be controlled. Because the formulation
targets at the optimized testing error given specific hyper-
parameter n and utilizes global information to select test set
with strongest generalization ability among AV models, FST
is possible to tackle the inaccuracy issue with small testing
numbers. As the randomness is restricted in a finite range, it
can be used to measure whether the testing error is acceptable
within fixed number n of scenarios.
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IV. CASE STUDY

A. Cut-in Scenario

Cut-in is a scenario with high frequency and definite risk
in traffic [19], which is adopted in this paper for the testing
experiment. As shown in Fig. 1, the state of cut-in scenario
could be simplified as a 2-dimensional variable

x = [R, Ṙ], (19)

where R and Ṙ denote the range and range rate respectively
between the background vehicle (BV) and AV at the moment
of lane change. Considering the event A as crashes, if the
AV fails to speed down to avoid BV in scenario x such
that the distance between two vehicles break the threshold
d = sBV − sAV < dth, the AV would crash with BV.
If crashes happen we have P (A|x) = 1 and otherwise
P (A|x) = 0. By extracting real world driving behaviors
from NDD, we construct the exposure frequency p(x) of
each scenario variable at cut-in moments. Therefore P (A)
denotes the overall crash rate of AV. On the basis of NDD,
the scenario space is restricted within

X = {[R, Ṙ]|R ∈ (0, 90], Ṙ ∈ [−20, 10]}. (20)

By initializing specific cut-in scenario and simulating actions
for AV and BV for a sufficient period of time, P (A|x) and
crash rate for vehicle models can be tested.

B. Experiment Settings

Intelligent Driving Model (IDM) is a simple and widely-
used driving model to imitate human driving behaviors. In
order to construct a SM set with diverse human driving man-
ners and tendencies, we use 4 IDMs (denoting m1, ...,m4)
with different parameters from conservative to aggressive as
the basis and the SM set is a linear combination of these
models:

M =

{
m′|m′ =

4∑
i=1

cimi, ci ≥ 0, ∀i,
4∑

i=1

ci = 1

}
.

(21)
The performances of SMs are shown in Fig. 2. The separate
lines are the crash boundaries of 4 SMs between P (A|x) = 0
and P (A|x) = 1. Accidents appear in the left side of
boundaries with smaller range and range rate and the overall
crash rates of SMs vary from 4.6× 10−4 to 4.9× 10−3. The
exposure frequency of scenarios in NDD is illustrated with
the saturability of background color. We can see that most
scenarios with large exposure frequency p(x) are crash-free.
This results in the rarity of crash events.

The AV model for test is set to another group of IDM
parameters with the crash rate of 3.0× 10−4 and BV keeps
a constant velocity after changing lane. As the simulation in
our experiment is a complex temporal process, it is hard to
fitting the exact crash performance of AV in all scenarios
with 4 SMs and we have m∗ /∈ M. Therefore, we set the
confidence parameter wM = 1.

With the property of linear combinations for M, we have

max
m′∈M

|µ̃′ − µ′| = max
mi,i=1,...,4

|µ̃i − µi|, (22)
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accident boundary
NDE testing
Uniform testing

Fig. 2: Illustration of basic testing methods and SMs. Sce-
narios with smaller range and range rate in the left side of
boundary would encounter crashes in simulation. The satura-
bility of background demonstrate the exposure frequency in
NDD.

and the optimization objective function can be computed. In
order to introduce randomness in FST method, we randomly
initialize the test set Xs,n and perform gradient descent to
search for optimal set Xs,n.

As comparisons, we applied CMC testing in NDE and
the uniform sampling method random quasi-Monte Carlo
(RQMC) [31] to test the AV model. The results of 100
testing scenarios generated by NDE and uniform sampling
are also shown in Fig. 2. Because of the rarity of crash
events, almost all scenarios generated in NDE concentrate in
unchallenging areas, which make the testing and evaluation
result effectless. RQMC selects scenarios uniformly in the
scenarios space with randomness. The scenarios information
is extracted evenly to evaluate the performace of AV. With
a small number of test, scenarios with high risks might be
tested.

With the purpose of verifying FST method with diverse
sizes of test set and examining the error bound, we set n =
5, 10, 20 as the restricted numbers of test. With each number
of testing scenarios, the baseline methods and FST method
were repeated for 100 times.

C. Evaluation Results

We use an example of 20 scenarios sampled by FST
in Fig. 3 to illustrate the scenario samples selection and
coverage division strategy. The different colors is used to
distinguish the coverage set of samples with the saturability
hinting the exposure frequency. The crash boundary of AV
model under test is shown with the red line. We can see
that the coverage set is large for samples in regions where
the scenarios are not challenging enough. It means that
only a smaller number of tests are sufficient to verify the
performance of AVs. In regions where the SMs exhibit
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Fig. 3: Example of 20 samples and the coverage given by
FST method.

TABLE I: Statistics of testing with n = 5, 10, 20 samples

Method Average error (×10−3) ↓ Variance (×10−6) ↓

n = 5 n = 10 n = 20 n = 5 n = 10 n = 20

NDE 10.7 8.61 6.05 1561 573 163
Uniform 3.74 2.83 1.71 29.2 14.0 4.66

FST 1.11 1.06 0.85 1.68 1.40 1.00

disparate performances, more scenarios are sampled and the
coverage of each sample is relatively small. This ensures the
generalization ability of FST method among distinct AVs in
the prior knowledge set M. Moreover, the crash boundary of
SMs and AV matches roughly with the boundary of different
coverage set, which allows a smaller error bound and higher
accuracy for FST method.

The testing and evaluation results of NDE, uniform sam-
pling and FST are shown in Fig. 4. For NDE testing, most
experiments yield an overall crash rate of 0 while several
experiments produce huge testing errors. It indicates that the
accurate performance of AV can hardly be obtained with a
small test set in NDE. Uniform sampling method achieves
a more accurate evaluation result than NDE but in some
experiments the error is large. Compared to the other two
methods, the maximum errors of FST method using 5, 10, 20
samples are all bounded in a certain scope (the blue dashed
line in Fig. 4 around the real crash rate of AV.

The average error and variance of 3 methods are shown in
TABLE I. The FST method surpasses the common baseline
methods significantly in all experiments and indices. Further-
more, the accuracy of FST is less impaired than the other two
methods when the number of testing scenarios is smaller.
This remarkable feature shows the efficiency and reliability
of FST method to testing with restricted budgets or searching
for minimum test set.
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(a) n = 5
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(b) n = 10
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(c) n = 20

Fig. 4: Testing result of n = 5, 10, 20 samples with different
methods repeated in 100 experiments.

V. CONCLUSION

In this paper, we propose the few-shot testing method to
tackle the problem of quantifying AV performance with a
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strictly limited number of tests. By utilizing the scenario
neighborhood coverage and similarity on prior information
of models, we iteratively search for a small scenario set to
extract scenarios information with the strongest generaliza-
tion ability. A theoretical error bound can also be estimated
with FST to measure whether the accuracy of testing and
evaluation result is acceptable for a fixed size of test set.
Results show that the proposed method achieves better ac-
curacy than commonly used baseline methods particularly in
case that the limit on testing numbers is stricter. In future,
more efficient and general designment of scenario weight,
coverage and the fluctuation estimator could be developed.
Besides, the application of FST method on more complex
scenarios is also a potential direction of further studies.
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