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Abstract— The assessment of safety performance plays a
pivotal role in the development and deployment of connected
and automated vehicles (CAVs). A common approach involves
designing testing scenarios based on prior knowledge of CAVs
(e.g., surrogate models), conducting tests in these scenarios, and
subsequently evaluating CAVs’ safety performances. However,
substantial differences between CAVs and the prior knowledge
can significantly diminish the evaluation efficiency. In response
to this issue, existing studies predominantly concentrate on the
adaptive design of testing scenarios during the CAV testing
process. Yet, these methods have limitations in their applica-
bility to high-dimensional scenarios. To overcome this challenge,
we develop an adaptive testing environment that bolsters evalua-
tion robustness by incorporating multiple surrogate models and
optimizing the combination coefficients of these surrogate models
to enhance evaluation efficiency. We formulate the optimization
problem as a regression task utilizing quadratic programming.
To efficiently obtain the regression target via reinforcement
learning, we propose the dense reinforcement learning method
and devise a new adaptive policy with high sample efficiency.
Essentially, our approach centers on learning the values of
critical scenes displaying substantial surrogate-to-real gaps. The
effectiveness of our method is validated in high-dimensional
overtaking scenarios, demonstrating that our approach achieves
notable evaluation efficiency.

Index Terms— Adaptive testing environment generation, con-
nected and automated vehicles, dense reinforcement learning.

I. INTRODUCTION

TESTING and evaluating the safety performance of
connected and automated vehicles presents notable

challenges in their development and deployment. One
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Fig. 1. Illustration of the surrogate-to-real gaps, i.e., the safety performance
differences between SMs and various CAVs. The set of unsafe states indicates
all traffic scenes (i.e., snapshots of traffic scenarios) in which CAVs or SMs
may crash with background vehicles.

suggested approach involves testing CAVs in the naturalistic
driving environment (NDE), observing their behaviors,
and statistically comparing the testing results with human
drivers. However, the scarcity of safety-critical events in NDE
necessitates an impractical amount of testing miles–sometimes
in the hundreds of millions or even billions–to demonstrate
CAVs’ safety performance at the human-level, rendering the
evaluation process intolerably inefficient [1]. To increase
evaluation efficiency, recent years have seen rapid advance-
ments in the field of testing scenario library generation [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26].
This involves deliberately generating safety-critical testing
scenarios using prior knowledge of CAVs, such as surrogate
models (SMs). Employing SMs is promising for significantly
enhancing the evaluation efficiency [27], [28]. Nevertheless,
due to the intricate nature and black-box characteristics
of CAVs, substantial safety performance disparities exist
between SMs and diverse CAVs, a phenomenon referred to
as the surrogate-to-real gap, which is illustrated in Fig. 1.
This mismatch could undermine the effectiveness of the
generated testing scenario libraries, ultimately diminishing
the evaluation efficiency for diverse CAVs.

To tackle this issue, several adaptive testing methods have
been proposed [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38], [39]. The fundamental concept of these methods is to
dynamically generate testing scenarios during the evaluation
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Fig. 2. Illustration of the adaptive testing environment generation method
with multiple SMs.

process of CAVs. As more testing results accumulate, more
posterior knowledge of CAVs is gained, enabling the cus-
tomization of testing scenarios for the specific CAV under
test. However, most existing methods often apply only to
relatively simple scenarios, leaving the challenge of handling
high-dimensional scenarios unsolved. The difficulty in adap-
tively generating high-dimensional scenarios stems from the
compounded effects of the curse of rarity (CoR) and the
curse of dimensionality (CoD) [40]. The CoR indicates that,
due to the rarity of safety-critical events, the volume of data
needed for sufficient information grows exponentially. The
CoD pertains to the dimensionality of variables representing
realistic scenarios, causing computational costs to escalate
exponentially with the increase in scenario dimensions. Due
to the CoR and CoD challenges, most existing scenario-based
testing approaches are limited to short scenario segments
with few background road users, involving low-dimensional
decision variables that fail to capture the full complexity
and variability of the real-world driving environment [27],
[28], [41], [42], [43], [44]. Towards addressing this challenge,
our previous work introduced the naturalistic and adversarial
driving environment (NADE) method capable of generating
high-dimensional highway driving scenarios [45]. However,
the NADE overlooked the performance gap between diverse
CAVs and the SM, potentially impeding the testing process.

To address this problem, we develop an adaptive testing
environment (AdaTE) generation method that enhances evalu-
ation robustness by employing multiple SMs, while optimizing
the combination coefficients of these SMs to improve evalu-
ation efficiency, as shown in Fig. 2. In NADE, if the set of
unsafe states of the SM can not cover the set of unsafe states
of the CAV under test, then the crash rate of this CAV might
be severely underestimated. This is because NADE will rarely
test crash scenarios containing unsafe states not covered by
the SM. We will demonstrate such cases in Subsection V-B.
Using multiple SMs can broaden the coverage of unsafe
states, enabling AdaTE to test various CAVs unbaisedly.
In the absence of any information about the particular CAV
under test, using SMs with average combination coefficients
might be the most suitable approach. However, this could
reduce evaluation efficiency since the resulting NADE is not
tailored to any specific CAV. To improve evaluation efficiency,
we optimize the combination coefficients of SMs through

adaptive testing, which is formulated as a regression task using
quadratic programming (QP). However, efficiently obtaining
the regression target through reinforcement learning (RL) is
highly challenging, as the regression target represents the
prediction of crash probabilities. This is primarily due to the
CoR that critical information such as crash events is rare
in NDE, resulting in extremely sparse rewards. To tackle
this challenge, we introduce the dense reinforcement learning
(DenseRL) method, which extends the dense deep reinforce-
ment learning method proposed in [46] for deep reinforcement
learning to the tabular setting. The DenseRL method, coupled
with a newly designed adaptive policy, can efficiently learn
the regression target. Essentially, our approach focuses on
learning the values of critical state-action pairs exhibiting
significant surrogate-to-real gaps. To validate our method,
the high-dimensional overtaking scenarios are investigated.
The results demonstrate that our approach achieves higher
evaluation efficiency compared to both NDE and NADE.

The subsequent sections of this paper are structured as
follows. Section II furnishes foundational knowledge for test-
ing CAVs in NDE and NADE, and then formulates the
problem of adaptive testing in high-dimensional scenarios as a
regression problem that optimizes the combination coefficients
of multiple SMs. Towards addressing this problem, the AdaTE
is developed in Section III, where the DenseRL method is
proposed to efficiently learn the regression target, and then
the regression problem is solved using QP. The theoretical
analysis for the convergence of DenseRL method is established
in Section IV. To validate the effectiveness of the proposed
method, Section V provides empirical results from testing
CAVs in the high-dimensional overtaking scenarios. Finally,
Section VI concludes the paper and discusses future research.

II. PROBLEM FORMULATION

In this section, the preliminary knowledge for testing CAVs
in NDE and NADE is provided in Subsection II-A and II-B,
respectively. Then the adaptive testing problem will be formu-
lated in Subsection II-C. The list of abbreviations is shown in
Table I. Summary of notation is listed in Table II.

A. Naturalistic Driving Environment Testing

Let x := (s0, a0, . . . , sT−1, aT−1, sT ) ∈ X denote the
testing scenario, where st ∈ S is the state of the CAV and
background vehicles (BVs) at time t , at ∈ A is the action of
BVs at time t , T is the time horizon, and X is the set of all
feasible scenarios. Consider the probability space (X ,F ,P),
where F := P(X ) is the σ -algebra, P(X ) := {X ′ : X ′ ⊆ X }
is the power set of X , P({x}) := p(x), ∀x ∈ X is the
probability measure, and p is the naturalistic distribution of
scenarios, which can be expressed as

p(x) := ρ(s0)

T−1∏
t=0

φ(at |st )P(st+1|st , at ), ∀x ∈ X , (1)

where ρ is the initial state distribution, φ is the naturalistic
driving policy of BVs, and P is the state transition probability.
Denote the crash event between the CAV and BVs as F :=
{x ∈ X : sT ∈ Scrash} ∈ F , where Scrash is the set of crash
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TABLE I
LIST OF ABBREVIATIONS

states. Then the crash rate in NDE is given by µ := P(F) =
Ep[IF (X)], where IF is the indicator function of F , and X :
x 7→ x, ∀x ∈ X is the scenario random variable. According
to Monte Carlo theory [47], the crash rate can be estimated in
NDE as

µ̂n :=
1
n

n∑
i=1

IF (X i ), X i ∼ p, (2)

where n is the number of tests, and X i are scenario random
variables sampled i.i.d. from p.

B. Naturalistic and Adversarial Driving Environment Testing

The evaluation efficiency of NDE suffers severely from the
CoR [40]. Using importance sampling method to replace the
naturalistic distribution with the importance function (IF) is
helpful to improve the evaluation efficiency [27], [28], [42],
[43]. However, the importance sampling method can not be
directly applied in high-dimensional scenarios because of the
CoD [48]. Therefore, the NADE method has been proposed to
only control critical variables at critical moments, while keep-
ing other variables with their naturalistic distributions [45].
Specifically, the importance function is given by

q(x) := ρ(s0)

T−1∏
t=0

ψ(at |st )P(st+1|st , at ), ∀x ∈ X , (3)

where ψ is the importance policy defined as

ψ(a|s) :=

φ(a|s), if s /∈ Sc,

ϵφ(a|s)+ (1− ϵ)
Q(s, a)φ(a|s)

V (s)
, if s ∈ Sc.

(4)

Here, Sc represents the set of safety-critical states, ϵ ∈ (0, 1)
is a defensive parameter, Q(s, a) ∈ [0, 1] is the maneuver
challenge indicating the crash probability when BVs take
action a in state s, V (s) := Eφ[Q(s, A)] ∈ [0, 1] is the

criticality, and A : x 7→ a for all x ∈ X is the action random
variable. According to importance sampling theory [47], the
crash rate can be estimated in NADE as

µ̂q :=
1
n

n∑
i=1

IF (X i )p(X i )

q(X i )
, X i ∼ q. (5)

C. Adaptive Testing

Although the NADE has shown great potential for testing
CAVs efficiently [27], [28], [42], [43], one crucial issue
arises when testing diverse CAVs. The performance of NADE
strongly relies on the selected importance function, which
may not be suitable for various CAVs, leading to catastrophic
failures (such as crash rate underestimation). Towards solving
this issue, the goal of adaptive testing is to improve the
robustness of NADE for diverse CAVs, while keeping the
evaluation efficiency. One approach is to solve the optimization
problem that minimizes the estimation variance of NADE over
the function space Q that incorporates all possible importance
functions, i.e.,

min
q∈Q

σ 2
q := Varq

(
IF (X)p(X)

q(X)

)
. (6)

By optimizing q in Q, the importance function could be
customized for the specific CAV under test, thus improving
the evaluation efficiency for diverse CAVs.

Solving the optimization problem (6) is highly challenging,
because the optimization space Q is a general function space.
To address this issue, we propose to reduce the optimization
space Q to the function space spanned by multiple importance
functions, which can be formulated as QJ := {qα ∈ Q :∑J

j=1 α j = 1, α j ⩾ 0} ⊂ Q, where qα is the mixture
importance function with mixture importance policy ψα :=∑J

j=1 α jψ j , ψ j are importance policies, α j are combination
coefficients, α := [α1, . . . , αJ ]

⊤, and J is the number of
importance functions. We note that these importance functions
could be obtained from multiple SMs and other safety met-
rics [45]. With QJ in place of Q, the optimization problem (6)
can be simplified as

min
qα∈QJ

σ 2
qα
:= Varqα

(
IF (X)p(X)

qα(X)

)
. (7)

Then our goal is to optimize qα towards the optimal impor-
tance function q∗, which can be approximated by optimizing
ψα towards the optimal importance policy ψ∗. According
to importance sampling theory [47], the optimal importance
policy is given by ψ∗(a|s) = Q∗(s, a)φ(a|s)/V ∗(s), where
Q∗(s, a) := P(F |S = s, A = a) is the optimal maneuver
challenge that represents the crash probability given current
state-action pair (s, a), S : x 7→ s, ∀x ∈ X is the state
random variable, and V ∗(s) := Eφ[Q∗(s, A)] is the optimal
criticality. Then the optimization problem (7) can be simplified
as a regression task via QP, i.e.,

min
α∈RJ

1
2

∑
s∈S,a∈A

[
Q∗(s, a)− Qα(s, a)

]2

s.t. 1⊤α = 1, α ⩾ 0, (8)
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TABLE II
SUMMARY OF NOTATION

where Qα :=
∑J

j=1 α j Q j is the mixture maneuver challenge,
and Q j are maneuver challenges associated with importance
policies ψ j . The key for solving this optimization problem
lies in efficiently obtaining Q∗, which can be formulated as
a RL problem (see Subsection III-A). However, learning Q∗

through RL in NDE is highly challenging due to the CoR that
the critical information such as crash events is extremely rare.
Moreover, since our goal is to optimize the combination coef-
ficients, accurately computing Q∗ across the entire state-action
space is unnecessary, as it requires large number of tests and
thereby compromises optimization efficiency. We will address
these challenges in the forthcoming Section III.

III. METHODS

To address the CoR, we first propose in Subsection III-A the
dense reinforcement learning method. To facilitate DenseRL
method for adaptive testing, a new adaptive policy with
high sample efficiency is designed in Subsection III-B. Then
the regression problem that optimizes combination coeffi-
cients will be solved via QP in Subsection III-C. Finally,
Subsection III-D summarizes the AdaTE generation algorithm.

A. Dense Reinforcement Learning

The problem to find Q∗ can be formulated as a RL problem.
Define M := (S,A, R, P, γ ) as the Markov decision process,
where R is the reward function, R(s) := IScrash(s), ∀s ∈ S,
and γ ∈ (0, 1] is the discount factor. The state-action value
function is given by

Qφ(s, a) = Ep

 T∑
τ=t+1

γ τ−t−1 Rτ

∣∣∣∣St = s, At = a

 , (9)

where t is the time step of (s, a), Rτ := R. If γ = 1, then
Q∗ = Qφ . To see this, write

Q∗(st , at ) = P(F |S = st , A = at )

= E[IF ((st , at , . . . , ST ))|S = st , A = at ]

= E[IScrash(ST )|S = st , A = at ]

Fig. 3. Illustration of the dense reinforcement learning method.

= Ep

 T∑
τ=t+1

Rτ

∣∣∣∣St = st , At = at


= Qφ(st , at ), ∀st ∈ S, at ∈ A. (10)

Then Q∗ can be learned by RL in NDE, which faces the
CoR, because the informative data (i.e., critical states and
actions) in NDE is rare and the rewards (i.e., crash events)
are extremely sparse. To address this challenge, we propose
the dense reinforcement learning method, following the similar
ideas in [46]. As shown in Fig. 3, the core concept of
DenseRL is to start with critical initial states, use off-policy
learning mechanism, edit the Markov chains by removing the
uncritical states and reconnecting the critical states, and then
backpropagate the reward along the edited Markov chains.

Initially, we set Q(s, a) = 0, ∀s ∈ S, a ∈ A. To optimize
Q towards Q∗, DenseRL tries to minimize the Bellman error
δ̄ := BφQ−Q, where Bφ is the Bellman backup operator [49],
[50] defined as

BφQ(St , At ) := Eφ[Rt+1 + γ Q(St+1, At+1)|St , At ]. (11)

Let Sc := {s ∈ S : V̄ (s) > 0} denote the set of critical states,
where V̄ (s) := Eφ[Q̄(s, A)] and Q̄ := (1/J )

∑J
j=1 Q j . Then

for each training iteration, the initial state will be sampled
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uniformly from Sc, thereafter following an appropriate behav-
ior policy (e.g., the uniform policy). For each transition
(St , At , Rt+1, St+1), DenseRL learns Q by the following
update rule:

Q(St , At )← Q(St , At )+ νtδt ISc (St ), (12)

where νt is the learning rate, δt := B̂φQ(St , At )−Q(St , At ) is
the temporal difference error, and B̂φ is the Bellman evaluation
operator defined as

B̂φQ(St , At ) := Rt+1 + γEφ[Q(St+1, At+1)|St+1]. (13)

B. Adaptive Policy Design

In adaptive testing, our focus is primarily on state-action
pairs that exhibit significant surrogate-to-real gaps. This
emphasis is not effectively utilized when employing DenseRL
with a uniform policy, which can result in diminished learning
efficiency. Here, the surrogate-to-real gap aims to measure the
gap between Qα and Q, which is defined as

g(Q||Qα) :=


|Q − Qα|

Qα
, if Qα > 0,

0, if Q = Qα = 0,
+∞, if Q > Qα = 0.

(14)

To enhance learning efficiency, we propose a novel adaptive
policy based on the probabilistic upper confidence tree (PUCT)
bound [51], which has been successfully employed in the
action selection stage of the Monte Carlo tree search algorithm
by AlphaGo [52]. Specifically, the PUCT bound is defined as

U1(s, a) := Q(s, a)+ u(s, a), (15)

where

u(s, a) := cφ(a|s)
√∑

a′∈A N (s, a′)
1+ N (s, a)

, (16)

c is a constant that determines the degree of exploration, and
N (s, a) is the visit count of (s, a), ∀s ∈ S, a ∈ A. The action
selection policy that maximizing U1 over the action space
initially prefers actions with high exposure frequency φ(a|s)
and low visit count N (s, a), but asymptotically prefers actions
with high state-action value Q(s, a). For adaptive testing,
we modify the PUCT bound by replacing Q with g(Q||Qα)φ,
which accounts for both the surrogate-to-real gap g(Q||Qα)

and the exposure frequency φ. Specifically, the adaptive policy
is defined as

η(a|s) :=

 1, if a = argmax
a′∈A

U2(s, a′),

0, otherwise,
(17)

for all s ∈ S and a ∈ A, where

U2(s, a) := g(Q||Qα)(s, a)φ(a|s)+ u(s, a). (18)

Algorithm 1 Adaptive Testing Environment Generation
With Dense Reinforcement Learning
Input: naturalistic distribution p, maneuver challenges

Q j , j = 1, . . . , J , max simulation time T
Output: crash rate estimate

1 Initialize Q(s, a) = 0, N (s, a) = 0, ∀s ∈ S, a ∈ A;
2 Initialize i = 0, 1 = 10, α = 1/J ;
3 Initialize c = 2, termination = False, ℓ = 1, ℓth = 0.3;
4 while not termination do
5 Sample initial state s uniformly from Sc;
6 Set r ← 0, t ← 0;
7 while r = 0 and t < T do
8 Set t ← t + 1;
9 Sample a from the adaptive policy η given by

Eq. (17);
10 Set N (s, a)← N (s, a)+ 1;
11 Take action a, and observe s′, r ;
12 Update Q(s, a) according to Eq. (12);
13 Set s← s′;
14 end
15 Update α by solving the QP in Eq. (19) (e.g., via

CVXOPT [53]);
16 Update termination according to Eq. (20);
17 end
18 while ℓ > ℓth do
19 Set i ← i + 1;
20 Sequencially sample a testing scenario X i from qα

and test the CAV in this scenario;
21 Estimate crash rate µ̂qα by Eq. (5);
22 Set ℓ← relative half-width [42] of µ̂qα ;
23 end
24 Return µ̂qα ;

C. Combination Coefficient Optimization

Let D denote the set of visited critical state-action pairs,
then the combination coefficients can be optimized by solving
the following regression problem:

min
α∈RJ

1
2

∑
(s,a)∈D

[
Q(s, a)− Qα(s, a)

]2

s.t. 1⊤α = 1, α ⩾ 0, (19)

where Q is learned by DenseRL with the adaptive policy.
This regression problem (19) is a QP, which can be solved
by standard convex optimization tools such as CVXOPT [53].

D. Adaptive Testing Environment Generation Algorithm

By utilizing DenseRL, the combination coefficients can be
optimized for the particular CAV under test, resulting in the
generation of AdaTE. This process is outlined in Algorithm 1.
The termination criterion is when the average sliding differ-
ence (ASD) falls below a predetermined threshold (e.g., 0.02),
which is defined as

ASD(k) :=
1
J

J∑
j=1

∣∣∣∣∣∣
k∑

k′=k−1+1

[
α
(k′)
j − α

(k′−1)
j

]∣∣∣∣∣∣ , (20)
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where k ∈ N>0 is the number of tests, 1 ∈ N>0 is the sliding
stride (e.g., 1 = 10), α(k)j are combination coefficients of the
k-th iteration, and we set α(k)j := α

(1)
j for k < 1.

IV. THEORETICAL ANALYSIS

This section will provide theoretical analysis of the
proposed DenseRL method. Specifically, we prove the conver-
gence of DenseRL, i.e., Q(t) converges to Q∗ with probability
one, where Q(t) represents the Q function at t-th iteration and
t ∈ N⩾0. The proof is based on the following lemma [54].

Lemma 1: Consider the stochastic process (νt ,1t , Ft ), t ∈
N⩾0, where νt , 1t , Ft : � → R satisfy 1t+1(ω) = [1 −
νt (ω)]1t (ω) + νt (ω)Ft (ω), ω ∈ �. Let Ft be a sequence of
increasing σ -fields such that ν0 and 10 are F0-measurable
and νt , 1t and Ft−1 are Ft -measurable, t ∈ N>0. Then 1t
converges to zero with probability one under the following
Assumption 1, 2, 3 and 4.

Assumption 1: The set � is finite.
Assumption 2: νt (ω) ∈ [0, 1], t ∈ N⩾0,

∑
t νt (ω) = ∞,∑

t ν
2
t (ω) <∞, ∀ω ∈ �.

Assumption 3: ∥E[Ft |Ft ]∥∞ ⩽ γ ∥1t∥∞, where γ ∈

(0, 1), t ∈ N⩾0.
Assumption 4: Var(Ft (ω)|Ft ) ⩽ C(1 + ∥1t∥∞)

2, C > 0,
t ∈ N⩾0.

Proof: See [54]. □
Leveraging Lemma 1, we are now in position to prove the

following theorem.
Theorem 1: The DenseRL algorithm given by

Subsection III-A converges with probability one to Q∗

under the following Assumption 5, 6, 7 and 8.
Assumption 5: The sets S and A are finite.
Assumption 6: νt (s, a) ∈ [0, 1], t ∈ N⩾0,

∑
t νt (s, a) =

∞,
∑

t ν
2
t (s, a) <∞, ∀s ∈ Sc, a ∈ A.

Assumption 7: Q(0)(s, a) = 0, ∀s ∈ S, a ∈ A.
Assumption 8: V̄ (s) > 0 whenever V ∗(s) > 0.

Proof: The correspondence to Lemma 1 follows
from associating � with the state-action space S ×
A, ω with the state-action pair (s, a), νt (ω) with the
learning rate νt (s, a), 1t (ω) with Q(t)(s, a) − Q∗(s, a),
and Ft with the σ -field generated by random variables
{Q(0), S0, A0, ν0, R1, . . . , St , At , νt }. Then Theorem 1 can be
proved by verifying Assumption 1, 2, 3 and 4 in Lemma 1
accordingly.

1) Verification of Assumption 1. Assumption 5 clearly
confirms that � = S ×A is finite.

2) Verification of Assumption 2. Assumption 2 in Lemma 1
requires that all state-action pairs be visited infinitely
often [55]. According to Assumption 7 and 8, we know
that Q(t)(s, a) = Q∗(s, a) = 0, ∀s ∈ S−c, a ∈
A. In other words, the state-action values for uncrit-
ical states are already optimal values, and hence do
not need to be visited. It is sufficient that all critical
state-action pairs will be visited infinitely often, there-
fore the Assumption 2 can be verified by Assumption 6.

3) Verification of Assumption 3. Rewriting Eq. (12) we get

Q(t+1)(ωt ) =
[
1− νt (ωt )

]
Q(t)(ωt )+ νt (ωt )B̂φQ(t)(ωt ).

(21)

Subtracting from both sides the quantity Q∗(ωt ) yields

1t+1(ωt ) =
[
1− νt (ωt )

]
1t (ωt )+ νt (ωt )Ft (ωt ), (22)

where Ft := B̂φQ(t)
− Q∗. Since Bφ is a γ -contraction

mapping [56], we have

∥E[Ft |Ft ]∥∞ = ∥BφQ(t)
− Q∗∥∞

= ∥BφQ(t)
− BφQ∗∥∞

⩽ γ ∥Q(t)
− Q∗∥∞ = γ ∥1t∥∞. (23)

4) Verification of Assumption 4. Due to the fact that the
reward function is bounded, we have

Var
(
Ft (ωt )|Ft

)
= Var

(
B̂φQ(t)(ωt )− Q∗(ωt )|Ft

)
= Var

(
B̂φQ(t)(ωt )|Ft

)
⩽ C(1+ ∥1t∥∞)

2, (24)

for some constant C > 0.
To verify the measurability requirements in Lemma 1, we note
that Q(t) are Ft -measurable, and thus both 1t and Ft−1 are
Ft -measurable. Therefore, by Lemma 1 we know that 1t
converges to zero with probability one, i.e., Q(t) converges
to Q∗ with probability one. □

Remark 1: The Assumption 5 can be satisfied if both the
state space and the action space are discretized. Similar with
Assumption 2, the Assumption 6 requires that all critical
state-action pairs be visited infinitely often. The Assumption 7
is an initialization requirement that ensures all uncritical
state-action values are optimal values (i.e., 0). Moreover, the
Assumption 8 means that the critical states identified by all
surrogate criticalities can cover the critical states of the CAV
under test, since otherwise we would omit critical states that
should be explored and learned, leading to misconvergence
issues.

Remark 2: In adaptive testing, to fulfill the requirement
of Assumption 8, the selected SMs should exhibit sufficient
diversity to encompass the critical states of various CAVs.

V. RESULTS

In this section, the high-dimensional overtaking scenarios
will be elaborated in Subsection V-A. Then in Subsection V-B,
the testing and evaluation results in NDE, NADE and AdaTE
will be presented and analyzed.

A. Overtaking Scenarios

As shown in Fig. 4, we study the passing phase of the
high-dimensional overtaking scenarios, where a relatively
slow-moving leading vehicle (LV) travels in front of the BV,
while the automated vehicle (AV) is going to overtake BV
and LV. Meanwhile, BV can also overtake LV, then AV may
rear-end with BV, resulting in a crash. Denote the longitudinal
positions and velocities of LV, BV and AV as xLV, xBV, xAV,
vLV, vBV, vAV, respectively, then the state of the overtaking
scenarios can be formulated as s := [vBV, R1, Ṙ1, R2, Ṙ2]

⊤,
where R1 := xLV − xBV, Ṙ1 := vLV − vBV, R2 := xBV − xAV,
and Ṙ2 := vBV−vAV. The action of the overtaking scenarios is
defined as the collection of accelerations of LV and BV, i.e.,
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Fig. 4. Illustrations of the four phases of overtaking scenarios (a) and the
passing phase (Phase II) of overtaking scenarios (b). In overtaking scenarios,
the AV will overtake BV and LV. In the passing phase, the AV will pass BV
and LV. While AV is passing, BV may overtake LV.

a := [aLV, aBV]
⊤. The maximum simulation time and time

resolution are set to 20 s and 0.1 s, respectively.
The maximum dimension of overtaking scenarios will

exceed 1400 dimensions (201 time steps, each with 5 state
variables and 2 action variables). Due to constraints of vehicle
dynamics, the intrinsic dimension of the overtaking scenarios
is smaller than the extrinsic one. However, commonly used
dimension reduction techniques typically cannot guarantee the
preservation of all critical information during the reduction
process. As a result, the safety-critical scenarios that are
essential for evaluating the safety performance of CAVs may
be excluded. Moreover, our approach is complementary to
potential dimension reduction techniques that achieve no infor-
mation loss. In this paper, we focus on generating an adaptive
testing environment by directly dealing with the extrinsic
dimension of overtaking scenarios. This extrinsic dimension
of 1400 gives rise to the CoD, posing significant challenges
to the testing environment generation process.

B. Testing and Evaluation Results

In this subsection, we present and analyze the testing
and evaluation results in NDE, NADE and AdaTE. For the
generation of NDE and NADE, we use the same way as
in [45].1 To investigate the generalizability of the proposed
method, we test three diverse AVs: (1) the intelligent driver
model (IDM) [57], denoted as AV-I; (2) the IDM calibrated
in [58], denoted as AV-II; (3) the RL agent trained by
proximal policy optimization [59], denoted as AV-III. We use
three representative SMs involving normal, aggressive and
conservative driving styles: (1) IDM, denoted as SM-I (same
as AV-I); (2) the full velocity difference model (FVDM) [57]
with amin = −1 m/s2, denoted as SM-II; (3) FVDM with
amin = −6 m/s2, denoted as SM-III.

To demonstrate the failure cases of NADE due to surrogate-
to-real gaps, we test AV-I in the NADE where the importance

1Link to source code: https://github.com/michigan-traffic-lab/Naturalistic-
and-Adversarial-Driving-Environment

Fig. 5. (a) The crash rate estimations of AV-I in NDE and the NADE where
the importance function is constructed from SM-III. (b) The RHW of crash
rate estimations.

function is constructed from SM-III. Fig. 5(a) shows the crash
rate estimated by NDE and NADE (SM-III), where the bottom
x-axis represents the number of tests of NDE and the top
x-axis stands for the number of tests of NADE (SM-III).
The relative half-width (RHW) [42] is used as a proxy to
measure the convergence of crash rate estimation, which is
shown in Fig. 5(b). It can be seen that NADE (SM-III) fails to
converge to the ground truth crash rate estimated by NDE. The
spikes observed in Figs. 5(a) and 5(b) around 5.37× 106 and
7.87 × 106 tests are caused by limitations in the SM used
by NADE, specifically the SM-III, which fails to capture all
unsafe states of the AV under test. When an uncovered crash
scenario, Xu , occurs–where the SM incorrectly classifies all
unsafe states in this scenario as “safe”–NADE produces a
testing result of IF (Xu)p(Xu)/q(Xu) = 1. In most cases, the
testing results for crash scenarios are small (around 10−3),
while non-crash scenarios yield testing results of 0. A testing
result of 1 represents a significant deviation from the typical
results, which causes the curves in Figs. 5(a) and 5(b) to show
spikes. These spikes highlight that when the SM cannot fully
capture the unsafe states for the AV under test, NADE is
unable to accurately and efficiently estimate the crash rate.
This illustrates the need for an adaptive testing environment
to effectively and unbiasedly evaluate the safety performance
of diverse AVs.

To bolster the evaluation robustness of NADE, we use
three SMs with average combination coefficients (i.e., α =

[1/3, 1/3, 1/3]⊤) to establish the importance function. Fig. 6
shows the crash rate estimated in this new NADE and the
corresponding RHW for AV-I, AV-II and AV-III, respectively.
It can be found that for all three AVs, NADE converges to
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Fig. 6. The crash rate estimations for (a) AV-I, (b) AV-II and (c) AV-III in NDE and NADE, and corresponding RHW for (d) AV-I, (e) AV-II and (f) AV-III.

Fig. 7. The combination coefficients optimized by DenseRL with the adaptive policy for (a) AV-I, (b) AV-II and (c) AV-III, and the corresponding ASD for
(d) AV-I, (e) AV-II and (f) AV-III.

the same crash rate estimation as NDE, while using much less
number of tests for reaching the 0.3 RHW threshold.

Using multiple SMs with average combination coefficients
could improve evaluation robustness of NADE, but the eval-
uation efficiency may be compromised, as such NADE is
not customized for any specific AV under test. We opti-
mize the combination coefficients by DenseRL. Figs. 7(a)-(c)
uncover that DenseRL is able to optimize the combination

coefficients effectively and efficiently. In particular, the opti-
mized combination coefficients for AV-I, AV-II and AV-III
are αAV-I = [0.94, 0.03, 0.03]⊤ (the ground truth is α∗AV-I =

[1, 0, 0]⊤), αAV-II = [0.82, 0.17, 0.01]⊤, and αAV-III =

[0.64, 0.03, 0.33]⊤, respectively. To reach the ASD threshold
(0.02), the required number of tests for AV-I, AV-II and
AV-III are 3.4 × 104, 4.2 × 104, and 2.2 × 104, respec-
tively, as shown in Figs. 7(d)-(f). Then the AdaTE can be
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Fig. 8. The crash rate estimations for (a) AV-I, (b) AV-II and (c) AV-III in NADE and AdaTE, RHW of crash rate estimations for (d) AV-I, (e) AV-II and
(f) AV-III, and frequency distributions of bootstrapped required number of tests for (g) AV-I, (h) AV-II and (i) AV-III.

TABLE III
AVERAGE REQUIRED NUMBER OF TESTS AND AVERAGE ACCELERATION

RATIOS FOR AV-I, AV-II AND AV-III

generated by using three SMs with the optimized combination
coefficients.

To investigate the performance of AdaTE, we compare
its results with NADE, as shown in Fig. 8. It can be seen
from Figs. 8(a)-(c) that AdaTE achieves the same crash rate
estimation as NADE for all three AVs. To reach the 0.3 RHW
threshold, AdaTE requires less number of tests than NADE,
as shown in Figs. 8(d)-(f). To alleviate the stochasticity of
experiments, we bootstrap the testing results by shuffling
100 times. The frequency distributions of required number of
tests for AV-I, AV-II and AV-III are shown in Figs. 8(g)-(i),
respectively. The average required number of tests and average
acceleration ratios (AARs) of NDE, NADE and AdaTE for
three AVs are shown in Table III, where AARs (presented in

parentheses) are ratios of the average required number of tests
in NADE and AdaTE with respect to NDE. Compared with
NADE, AdaTE can reduce 37.67%, 21.64%, 36.06% number
of tests for AV-I, AV-II and AV-III, respectively, revealing
significant performance for increasing evaluation efficiency
while enhancing evaluation robustness.

VI. CONCLUSION

This paper proposes the dense reinforcement learning
approach, which is designed to facilitate adaptive testing
for a wide range of CAVs. The key idea involves learning
exclusively the values associated with critical state-action pairs
that exhibit significant surrogate-to-real gaps. By integrat-
ing DenseRL with an adaptive policy for determining the
regression target and employing QP for the regression of
combination coefficients, the AdaTE can be generated for
diverse CAVs. The effectiveness of our method is validated
in high-dimensional overtaking scenarios, revealing AdaTE’s
superior evaluation efficiency compared to both NDE and
NADE. One limitation of this work is that we only consider
discretized state and action spaces. Extending our approach
to continuous cases warrants further exploration. Additionally,
we have solely concentrated on the adaptive generation of
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testing scenarios, without delving into the adaptive evaluation
of testing results. Future endeavors will aim to integrate both
aspects.
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