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Adaptive safety performance testing for autonomous vehicles with adaptive importance
sampling
Jingxuan Yang, Zihang Wang, Daihan Wang, Yi Zhang, Qiujing Lu, Shuo Feng

• Efficiently and accurately assess the safety performance of various autonomous vehicles.
• Develop an adaptive testing framework that continuously refines testing policies during large-scale testing.
• Demonstrate significant evaluation efficiency in overtaking scenarios.
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A B S T R A C T
Efficient and accurate safety testing and evaluation are crucial for autonomous vehicles (AVs).
Recent studies have utilized prior information, such as surrogate models, to enhance testing
efficiency by deliberately generating safety-critical scenarios. However, discrepancies between
this prior knowledge and actual AV performance can undermine their effectiveness. To address
this challenge, adaptive testing methods dynamically adjust testing policies based on posterior
information of AVs, such as testing results. Most existing approaches focus on adaptively
optimizing testing policies during pre-tests, yet neglecting how to adapt the testing policies
in the large-scale testing process that is required for unbiased safety performance evaluation.
To fill this gap, we propose an adaptive testing framework that continuously optimizes testing
policies throughout large-scale testing. Our approach iteratively learns AV dynamics through
deep learning and optimizes testing policies based on the learned dynamics using reinforcement
learning. To tackle the challenge posed by the rarity of safety-critical events, our method
focuses exclusively on learning safety-critical states in both the dynamics learning and the policy
optimization processes. Additionally, we enhance evaluation robustness by integrating multiple
pre-trained testing policies and optimizing their combination coefficients. To accurately assess
safety performance, we evaluate testing results obtained from various testing policies using
adaptive importance sampling. Experimental validation in overtaking scenarios demonstrates
the significant evaluation efficiency of our method.

1. Introduction
Safety testing and evaluation are critical components in the development and deployment of AVs. One recom-

mended method for assessing the safety performance of AVs is to test them in naturalistic driving environment (NDE),
observe their behaviors, and statistically compare it to that of human drivers. However, the rarity of safety-critical
events in NDE necessitates large-scale testing to evaluate AV safety comprehensively, often requiring testing mileage
to extend into the billions of miles (Kalra and Paddock, 2016). In recent years, substantial research advances have been
made in improving the efficiency of AV testing and evaluation (Li et al., 2016, 2018, 2019, 2020; Menzel et al., 2018;
Tian et al., 2018; Riedmaier et al., 2020; Sun et al., 2021a; Li et al., 2021; Wang et al., 2021; Rempe et al., 2022; Feng
et al., 2023; Yan et al., 2023; Ren et al., 2024; Li et al., 2024a,b; Bai et al., 2024; He et al., 2024). A key concept in
these studies is leveraging prior knowledge of AVs, such as surrogate models (SMs), to generate testing scenarios rich
in safety-critical events. These SMs effectively capture the overall characteristics of AVs, thus significantly enhancing
testing efficiency (Feng et al., 2020a,c, 2021). However, the high complexity and black-box nature of AVs lead to
discrepancies between SMs and real AV performance. This surrogate-to-real gap can severely reduce the effectiveness
of the generated testing scenarios in evaluating the safety performance of diverse AVs.

To address this challenge, the core concept of existing adaptive testing methods (Zhao et al., 2016; Mullins et al.,
2018; Koren et al., 2018; Feng et al., 2020b; Sun et al., 2021b; Yang et al., 2022, 2023, 2024; Gong et al., 2023) is to
dynamically adjust the testing policy (i.e., the strategy for generating testing scenarios) based on posterior information
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Figure 1: Illustration of three adaptive testing paradigms, each targeting a different stage: pre-test, large-scale testing, and evaluation.
This paper focuses on the large-scale testing stage, introducing an adaptive testing framework that continuously optimizes testing
policies.

of AVs, such as testing results. As more testing results are gathered, the posterior information of AVs is progressively
enriched, enabling the optimization of testing policies that are better tailored to the specific AV under test. Most existing
adaptive testing approaches focus on efficiently optimizing testing policies through a few pre-tests, and then unbiasedly
estimate the safety performance of AVs through large-scale testing, utilizing techniques such as importance sampling
(Zhao et al., 2016; Feng et al., 2020b; Gong et al., 2023; Yang et al., 2024). In importance sampling, the testing policies
(i.e., importance functions) must meet certain criteria to ensure evaluation unbiasedness (Owen, 2013). With the large-
scale testing results, the estimation efficiency of performance indices can be further improved during the evaluation
stage (Yang et al., 2022, 2023). The three adaptive testing paradigms mentioned are illustrated in Fig. 1. Most existing
methods have not addressed adaptive testing during the large-scale testing stage. The primary distinction between
adaptive testing in the pre-test stage and the large-scale testing stage lies in how posterior information is collected.
In the pre-test stage, posterior information is actively gathered through specially designed pre-testing policies aimed
at minimizing the surrogate-to-real gap and optimizing testing policies with minimal tests. In contrast, during large-
scale testing, posterior information is gathered reactively through testing policies that aim to efficiently and accurately
evaluate the safety performance of AVs. Consequently, it is challenging to leverage such information to further optimize
the testing policies during the large-scale testing stage, while maintaining the unbiasedness of the performance indices.
This optimization is particularly challenging due to the curse of rarity (CoR) (Liu and Feng, 2024), as the informative
scenarios (e.g., crashes) sampled by the testing policies are usually rare in the high-dimensional scenario spaces
involving numerous sequential decision variables of road participants.

To address this challenge, we propose a novel adaptive testing framework that continuously optimizes testing
policies during large-scale testing, as shown in Fig. 2. The key idea is to learn AV dynamics based on posterior
information (i.e., testing results), use the learned dynamics to generate simulation testing results, and then optimize
testing policies based on these results through reinforcement learning. Two main issues arise. First, since testing policies
must ensure unbiased evaluation, the safety-critical dynamics data in testing scenarios are rare, making the use of
ordinary deep learning to learn AV dynamics highly inefficient. Second, due to the limited safety-critical dynamics
data, the learned AV dynamics may be more accurate in certain states but lack robustness across the entire state
space. To overcome these issues, we first focus on learning AV dynamics from safety-critical dynamics data rather
than from all data. We then optimize the testing policies using dense reinforcement learning (Feng et al., 2023; Yang
et al., 2024), which exclusively learns from safety-critical states during the temporal-difference learning process. To
enhance robustness, we utilize multiple pre-trained policies and optimize their combination coefficients. Finally, to
estimate performance indices from the testing results of different testing policies, we employ adaptive importance
sampling (Bugallo et al., 2017) to effectively aggregate these results. Validation in overtaking scenarios demonstrates
that our method significantly improves evaluation efficiency for various AVs.

The subsequent sections of this paper are structured as follows. In Section 2, we elaborate on the preliminary
methods for testing AVs in NDE and formulate the adaptive testing problem in large-scale testing stage. Section 3 then
addresses this problem by proposing an adaptive testing framework. Next, Section 4 provides a theoretical analysis
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Figure 2: Illustration of the adaptive testing framework. The AV dynamics is learned using only safety-critical states, and the testing
policy is then optimized based on the learned dynamics through dense reinforcement learning. Evaluation robustness is improved
by utilizing multiple pre-trained testing policies and optimizing their combination coefficients. The testing results from different
testing policies are evaluated using adaptive importance sampling.

Table 1
List of Abbreviations.

Abbreviation Definition
AAR average acceleration ratio
AV autonomous vehicle
BV background vehicle

CoD curse of dimensionality
CoR curse of rarity
LV leading vehicle

MSE mean squared error
NADE naturalistic and adversarial driving environment
NDE naturalistic driving environment

NeuDyM neural dynamics model
RHW relative half-width
SM surrogate model

of the convergence, consistency, and efficiency of our method. Finally, Section 5 validates the proposed method’s
effectiveness through testing various AVs in overtaking scenarios.

2. Problem formulation
This section introduces the foundational concepts for testing AVs in NDE in Subsections 2.1. To improve the

evaluation efficiency of NDE, the naturalistic and adversarial driving environment (Feng et al., 2021) is introduced in
Subsection 2.2. The adaptive testing problem is subsequently formulated in Subsection 2.3. Table 1 presents the list of
abbreviations, while Table 2 summarizes the notation used.
2.1. Naturalistic driving environment testing

Let  ∶= ( ,,AV, 𝜙, 𝜋, 𝜌) represent the NDE, where  is the state space of the AV and background vehicles
(BVs),  and AV are the action spaces for BVs and AV, respectively, 𝜙 and 𝜋 denote the driving policies of BVs and
J. Yang et al.: Preprint submitted to Elsevier Page 3 of 16
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Adaptive Safety Performance Testing

Table 2
Summary of Notation.

Notation Definition Notation Definition
𝒂,𝒂𝑡 BVs’ action, BVs’ action at time 𝑡 𝑅1, 𝑅2 range between LV and BV, BV and AV
𝒂AV action of AV 𝑅̇1, 𝑅̇2 range rate between LV and BV, BV and AV

𝑎min, 𝑎max min and max accelerations ℝ set of real numbers
𝑨𝑡 action random variable of BVs 𝒔, state, state space
𝑨AV action random variable of AV 𝒔𝑡,𝑺 𝑡 state at time 𝑡, random variable of 𝒔𝑡
 action space of BVs crash set of crash states

AV action space of AV 𝑐 set of safety-critical states
𝐵 batch size 𝑡, 𝑇 time step, time horizon

(𝑘) set of testing results at update step 𝑘 𝑐 set of critical time steps
 naturalistic driving environment 𝑉 , 𝑉 ∗ criticality, optimal criticality
𝐹 crash event 𝑤,𝑊 importance policy weight, importance weight
 𝜎-algebra 𝑊 (𝑘) importance weight at update step 𝑘
𝕀𝐹 indicator function of 𝐹  scenario space
𝐽 number of pre-trained maneuver challenges 𝒙,𝑿 scenario, scenario random variable
𝑘 update step in adaptive testing 𝑣LV, 𝑣BV, 𝑣AV longitudinal velocities of LV, BV, AV
 loss function 𝑥LV, 𝑥BV, 𝑥AV longitudinal positions of LV, BV, AV
𝑛𝑘 number of tests in update step 𝑘 𝜶, 𝛼𝑗 combination coefficients
𝑛(𝑘) total number of tests up to update step 𝑘 𝜶(𝑘) combination coefficients at update step 𝑘
ℕ set of natural numbers 𝛾 discount ratio
𝑝 naturalistic distribution 𝛿𝑡 temporal difference error at time 𝑡
ℙ𝑝 probability measure 𝜇 crash rate in NDE
𝑃𝜋 state transition probability 𝜇̂𝑝 estimation of 𝜇 in NDE
 power set 𝜇̂𝑞 estimation of 𝜇 in NADE
𝑞 importance function 𝜇̃(𝑘) estimation of 𝜇 by adaptive testing at update step 𝑘
𝑞∗ optimal importance function 𝜈𝑡 learning rate at time 𝑡
𝑞(𝑘) importance function at update step 𝑘 𝜎2𝑞 asymptotic variance of 𝜇̂𝑞
 function space of importance functions 𝜙 driving policy of BVs
𝑄 maneuver challenge 𝜓 importance policy
𝑄∗ optimal maneuver challenge 𝜓∗ optimal importance policy
𝑄(𝑘) maneuver challenge at update step 𝑘 𝜋 driving policy of AV
𝑄𝑗 pre-trained maneuver challenges 𝜋(𝑘) NeuDyM policy at update step 𝑘
𝑄𝜶 𝜶-combination of 𝑄𝑗 𝜌 initial state distribution
𝑟, 𝑅 reward, reward random variable 𝜖 defensive parameter

AV, respectively, and 𝜌 is the initial state distribution. The scenario can then be defined as
𝒙 ∶= (𝒔0,𝒂0,… , 𝒔𝑇−1,𝒂𝑇−1, 𝒔𝑇 ) ∈  , (1)

where 𝒔𝑡 ∈  represents the state at time 𝑡, 𝒂𝑡 ∈  is the action of BVs at time 𝑡, 𝑇 is the time horizon, and  is the
set of all feasible scenarios. In NDE, the naturalistic distribution 𝑝 of scenarios is

𝑝(𝒙) ∶= 𝜌(𝒔0)
𝑇−1
∏

𝑡=0
𝜙(𝒂𝑡|𝒔𝑡)𝑃𝜋(𝒔𝑡+1|𝒔𝑡,𝒂𝑡), ∀𝒙 ∈  , (2)

where 𝑃𝜋 is the state transition probability associated with the AV policy 𝜋.
Consider the probability space ( , ,ℙ𝑝), where  ∶= () is the 𝜎-algebra, () ∶= { ′ ∶  ′ ⊆ } is the

power set of  , and ℙ𝑝({𝒙}) ∶= 𝑝(𝒙) for all 𝒙 ∈  is the probability measure. Denote the crash event between the AV
and BVs as 𝐹 ∶= {𝒙 ∈  ∶ 𝒔𝑇 ∈ crash} ∈  , where crash represents the set of crash states. The crash rate in NDE
is then given by

𝜇 ∶= ℙ𝑝(𝐹 ) = 𝔼𝑝[𝕀𝐹 (𝑿)], (3)
where 𝑿 ∶ 𝒙 ↦ 𝒙 for all 𝒙 ∈  is the scenario random variable, and 𝕀𝐹 is the indicator function of 𝐹 ,

𝕀𝐹 (𝑿) =

{

1, if 𝑿 ∈ 𝐹 ,
0, otherwise. (4)
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Adaptive Safety Performance Testing

According to Monte Carlo theory (Owen, 2013), the crash rate can be estimated in NDE as

𝜇̂𝑝 ∶=
1
𝑛

𝑛
∑

𝑖=1
𝕀𝐹 (𝑿𝑖), 𝑿𝑖 ∼ 𝑝, (5)

where 𝑛 is the number of tests, and 𝑿𝑖 are scenario random variables sampled independently and identically distributed
(i.i.d.) from the naturalistic distribution 𝑝.
2.2. Naturalistic and adversarial driving environment testing

The evaluation efficiency of crash rate in NDE is severely hindered due to the CoR (Liu and Feng, 2024), as the
rarity of crash events requires an impractically large number of testing miles-often reaching hundreds of millions
or even billions (Kalra and Paddock, 2016). Using importance sampling to replace the naturalistic distribution 𝑝
with an importance function 𝑞 can enhance the evaluation efficiency (Zhao et al., 2016, 2017; Feng et al., 2020a,c).
However, the importance sampling approach cannot be directly applied in high-dimensional scenarios because of
the curse of dimensionality (CoD) (Au and Beck, 2003), as the estimation variance of the crash rate using non-
optimal importance functions increases exponentially with the number of scenario dimensions. To address this issue,
the naturalistic and adversarial driving environment (NADE) has been proposed (Feng et al., 2021), which applies
importance sampling only to critical variables at critical time steps, while retaining the naturalistic distribution for
other variables. Specifically, the importance function is

𝑞(𝒙) ∶= 𝜌(𝒔0)
𝑇−1
∏

𝑡=0
𝜓(𝒂𝑡|𝒔𝑡)𝑃𝜋(𝒔𝑡+1|𝒔𝑡,𝒂𝑡), ∀𝒙 ∈  , (6)

where 𝜓 is the importance policy defined as

𝜓(𝒂|𝒔) ∶=
⎧

⎪

⎨

⎪

⎩

𝜙(𝒂|𝒔), if 𝒔 ∉ 𝑐 ,

𝜖𝜙(𝒂|𝒔) + (1 − 𝜖)
𝑄(𝒔,𝒂)𝜙(𝒂|𝒔)

𝑉 (𝒔)
, if 𝒔 ∈ 𝑐 .

(7)

Here, 𝑐 represents the set of safety-critical states, 𝜖 ∈ (0, 1) is a defensive parameter,𝑄(𝒔,𝒂) ∈ [0, 1] is the maneuver
challenge indicating the crash probability when BVs take action 𝒂 in state 𝒔, 𝑉 (𝒔) ∶= 𝔼𝜙[𝑄(𝒔,𝑨)] ∈ [0, 1] is the
criticality, and 𝑨 ∶ 𝒙 ↦ 𝒂 for all 𝒙 ∈  is the action random variable. The crash rate can then be estimated in NADE
as

𝜇̂𝑞 ∶=
1
𝑛

𝑛
∑

𝑖=1

𝕀𝐹 (𝑿𝑖)𝑝(𝑿𝑖)
𝑞(𝑿𝑖)

= 1
𝑛

𝑛
∑

𝑖=1
𝕀𝐹 (𝑿𝑖)𝑊 (𝑿𝑖), 𝑿𝑖 ∼ 𝑞, (8)

where 𝑊 (𝒙) ∶= 𝑝(𝒙)∕𝑞(𝒙) =
∏

𝑡∈𝑐 𝑤(𝒂𝑡|𝒔𝑡) for all 𝒙 ∈  is the importance weight, 𝑤(𝒂|𝒔) ∶= 𝜙(𝒂|𝒔)∕𝜓(𝒂|𝒔) is
the importance policy weight, and 𝑐 ∶= {𝑡 ∈ {0,… , 𝑇 − 1} ∶ 𝒔𝑡 ∈ 𝑐} denotes the set of critical time steps.
2.3. Adaptive testing

While NADE have demonstrated great potential for efficient testing and evaluation of AVs using the importance
function derived from a single SM (Feng et al., 2021, 2023), its evaluation efficiency is significantly affected by the
surrogate-to-real gap. In NADE, this gap refers to the discrepancies between the designed importance function and the
optimal importance functions for different AVs. The adaptive testing method aims to address this issue. Mathematically,
the objective of adaptive testing is to minimize the variance of the crash rate estimate in NADE over the function space
, which contains all probability distributions 𝑞 that satisfy

𝑞(𝒙) > 0, ∀𝒙 ∈ {𝒙 ∈  ∶ 𝕀𝐹 (𝒙)𝑝(𝒙) > 0}. (9)
This optimization problem can be formulated as

min
𝑞∈

𝜎2𝑞 ∶= Var𝑞

(

𝕀𝐹 (𝑿)𝑝(𝑿)
𝑞(𝑿)

)

. (10)
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Adaptive Safety Performance Testing

By optimizing 𝑞 within the function space , the importance function can be customized for specific AVs, thereby
improving the evaluation efficiency.

In the pre-test stage, one solution to the adaptive testing problem (10) is to employ the Bayesian optimization
framework (Snoek et al., 2012), where acquisition functions can be designed to identify the next most informative
scenarios. The primary goal of these acquisition functions is to minimize the difference between 𝑞 and the optimal
importance function 𝑞∗ with as few tests as possible. For example, the acquisition function can be designed to sample
the next testing scenario 𝒙′ such that the absolute gap between 𝑞(𝒙′) and 𝑞∗(𝒙′) is maximized across the scenario space.
In contrast, during large-scale testing, to accurately and efficiently evaluate performance indices, the testing scenarios
are sampled from importance functions (either initially designed or optimized through adaptive testing) that meet the
condition in Eq. (9). As a result, the testing scenarios cannot be deliberately selected during large-scale testing, and we
must rely on the testing scenarios and results generated by the importance functions to optimize them. This optimization
is highly challenging due to the CoR, as the informative scenarios (e.g., crashes) sampled by the importance functions
are so rare that an impractically large number of tests is needed to optimize 𝑞 effectively.

From Eq. (6), it is clear that optimizing 𝑞 is equivalent to optimizing the importance policy 𝜓 . According to impor-
tance sampling theory (Owen, 2013), the optimal importance policy is given by 𝜓∗(𝒂|𝒔) ∶= 𝑄∗(𝒔,𝒂)𝜙(𝒂|𝒔)∕𝑉 ∗(𝒔) for
all 𝒔 ∈  and 𝒂 ∈ , where𝑄∗ ∶= ℙ𝑝(𝐹 |𝑺,𝑨) is the optimal maneuver challenge, and 𝑉 ∗ ∶= ℙ𝑝(𝐹 |𝑺) is the optimal
criticality. Thus, the key to adaptive testing is optimizing 𝑄 toward 𝑄∗ based on the currently available testing results.
Let (𝑘) represent the testing scenarios and results accumulated up to update step 𝑘, and 𝑄(𝑘) denote the optimized
maneuver challenge at update step 𝑘, for 𝑘 = 1, 2,… . The optimization of 𝑄(𝑘) based on (𝑘−1) can be formulated as
a reinforcement learning problem. Let  ∶= ( ,, 𝑅, 𝑃𝜋 , 𝜌, 𝛾) denote the Markov decision process, where 𝑅 is the
reward function defined as 𝑅(𝒔) ∶= 𝕀crash

(𝒔) for all 𝒔 ∈  , and 𝛾 ∈ (0, 1) is the discount factor. The optimal maneuver
challenge 𝑄∗ can then be expressed as the state-action value function, i.e., 𝑄∗ ∶= 𝔼(𝜙,𝜋)[𝑅𝑡∶𝑇 |𝑺 𝑡,𝑨𝑡], where 𝑡 is any
time step, and𝑅𝑡∶𝑇 ∶=

∑𝑇
𝜏=𝑡+1 𝛾

𝜏−𝑡−1𝑅𝜏 is the discounted sum of future rewards, with𝑅𝜏 ∶= 𝑅 for all 𝜏 = 𝑡+1,… , 𝑇 .
The maneuver challenges 𝑄(𝑘) can then be trained using reinforcement learning based on (𝑘−1). However, this

process encounters the CoR, as safety-critical states and actions are rare, and rewards (i.e., crash events) are highly
sparse. As the rarity of the crash events increases, the amount of training data for reinforcement learning to effectively
learn 𝑄(𝑘) increases significantly (Liu and Feng, 2024). To mitigate this issue, our previous work introduced the dense
reinforcement learning method (Feng et al., 2023; Yang et al., 2024), which learns exclusively the safety-critical states
during the temporal difference learning process. However, during testing, the number of safety-critical states in (𝑘−1)

is far less than what is required for 𝑄(𝑘) to converge to 𝑄∗. We address this challenge in the following section.

3. Methods
This section presents our adaptive testing method. The core idea is to learn AV dynamics based on testing scenarios

and results (𝑘−1), and then optimize maneuver challenges 𝑄(𝑘) based on the learned dynamics. Two primary issues
emerge. First, the rarity of safety-critical dynamics data in testing scenarios renders ordinary deep learning for learning
AV dynamics highly inefficient. Second, due to the limited availability of safety-critical dynamics data, the learned AV
dynamics may not generalize well across the entire state space. To address the first issue, Subsection 3.1 introduces
an adaptive dense reinforcement learning method to effectively learn maneuver challenges. To address the second,
Subsection 3.2 formulates a quadratic programming for optimizing the combination coefficients of multiple maneuver
challenges pre-trained with different SMs. In Subsection 3.3, we evaluate the crash rate using testing results obtained
from continuously updated importance functions based on adaptive importance sampling. Finally, Subsection 3.4
summarizes the complete adaptive testing algorithm.
3.1. Adaptive dense reinforcement learning

To effectively learn maneuver challenges𝑄(𝑘), we propose an adaptive dense reinforcement learning method, which
iteratively learns both the environment dynamics—specifically, the dynamics of the AV under test—through policy
functions 𝜋(𝑘) and state-action value functions (i.e., maneuver challenges) 𝑄(𝑘). Here, 𝑄(𝑘) ∶= 𝔼(𝜙,𝜋(𝑘))[𝑅𝑡∶𝑇 |𝑺 𝑡,𝑨𝑡]
represents the optimal maneuver challenges under the AV policies 𝜋(𝑘). To capture the dynamics 𝜋(𝑘), we train a deep
neural network using the dynamics data collected during testing, referred to as the neural dynamics model (NeuDyM).
The training of NeuDyM faces the CoR, as safety-critical dynamics data is so rare that ordinary training methods
(i.e., using all dynamics data) fail to capture meaningful information about safety-critical maneuvers. To resolve this
challenge, we propose to use exclusively the safety-critical dynamics data to train NeuDyM. Specifically, the gradient
J. Yang et al.: Preprint submitted to Elsevier Page 6 of 16
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of the loss function  with respect to the NeuDyM parameters 𝜽 is

𝒈̃ ∶= 1
𝐵

𝐵
∑

𝑖=1

𝜕(𝑺 𝑖,𝑨AV
𝑖 )

𝜕𝜽
𝕀𝑐 (𝑺 𝑖), (11)

where 𝐵 ∈ ℕ>0 is the batch size, and 𝑨AV
𝑖 ∶ 𝒙 ↦ 𝒂AV ∈ AV is the action random variable of AV. By focusing solely

on safety-critical dynamics data, the variance in gradient estimation for the loss function is significantly reduced,
enabling NeuDyM to effectively learn AV’s safety-critical maneuvers.

We then utilize the NeuDyM policies 𝜋(𝑘) to learn the maneuver challenges 𝑄(𝑘) through dense reinforcement
learning (Feng et al., 2023; Yang et al., 2024). The process begins by initializing 𝑄̂(𝒔,𝒂) = 0 for all 𝒔 ∈  and
𝒂 ∈ . In each training iteration, the initial state is uniformly sampled from 𝑐 , after which the BVs follow the
uniform behavior policy while the AV follows the NeuDyM policy 𝜋(𝑘). In dense reinforcement learning, the update
rule for 𝑄̂ is

𝑄̂(𝑺 𝑡,𝑨𝑡) ← 𝑄̂(𝑺 𝑡,𝑨𝑡) + 𝜈𝑡𝛿𝑡𝕀𝑐 (𝑺 𝑡), (12)
where 𝛿𝑡 ∶= 𝑅𝑡+1 + 𝛾𝔼𝜙[𝑄̂(𝑺 𝑡+1,𝑨𝑡+1)|𝑺 𝑡+1] − 𝑄̂(𝑺 𝑡,𝑨𝑡) is the temporal difference error, and 𝜈𝑡 is the learning rate.
Under mild assumptions, dense reinforcement learning is guaranteed to converge almost surely to 𝑄(𝑘) (see Theorem
1 in Yang et al. (2024)). However, the learned 𝑄(𝑘) may not generalize well to out-of-distribution state-action pairs.
Specifically, the 𝑄(𝑘) values are typically more accurate within a subspace of the entire state-action space—primarily
the space covered by the safety-critical dynamics data in (𝑘−1)—while values in other subspaces may degrade,
potentially becoming less accurate than before. As a result, directly applying the importance function derived from
𝑄(𝑘) for AV testing and evaluation can be risky. We address this issue in the following subsection.
3.2. Combination coefficient optimization

To improve the evaluation robustness of 𝑄(𝑘), we propose using a convex combination of multiple maneuver
challenges 𝑄𝑗 for 𝑗 = 1,… , 𝐽 , pre-trained with diverse SMs, to create a constrained optimization space. The
combination coefficients are then optimized by solving the following regression problem:

min
𝜶∈ℝ𝐽

1
2

∑

(𝒔,𝒂)∈𝑐×

[

𝑄(𝑘)(𝒔,𝒂) −𝑄𝜶(𝒔,𝒂)
]2

s.t. 1⊤𝜶 = 1, 𝜶 ⩾ 0,
(13)

where𝑄𝜶 ∶=
∑𝐽
𝑗=1 𝛼𝑗𝑄𝑗 is the 𝜶-combination of𝑄𝑗 , and 𝜶 = [𝛼1,… , 𝛼𝐽 ]⊤ is the vector of combination coefficients.

This regression problem is a quadratic programming and can be solved using standard convex optimization tools such
as CVXOPT (Andersen et al., 2004). Let 𝜶(𝑘) represent the solution to Eq. (13). The importance functions 𝑞(𝑘) can then
be derived from Eqs. (6) and (7) using 𝑄𝜶(𝑘) in place of 𝑄. By iteratively updating the importance functions based on
testing results and sampling new testing scenarios from the updated importance functions to gather more results, we
establish the adaptive testing process, except for crash rate estimation, which is elaborated in the next subsection.
3.3. Adaptive importance sampling

To estimate the crash rate based on the testing results obtained from different importance functions, we propose
applying adaptive importance sampling techniques (Bugallo et al., 2017) to aggregate these results effectively. The
crash rate can be estimated using adaptive importance sampling as

𝜇̃(𝑘) = 1
𝑛(𝑘)

𝑘
∑

𝜅=1

𝑛𝜅
∑

𝑖=1
𝕀𝐹 (𝑿𝜅,𝑖)𝑊 (𝜅)(𝑿𝜅,𝑖), 𝑿𝜅,𝑖 ∼ 𝑞(𝜅), (14)

where 𝑛(𝑘) ∶= ∑𝑘
𝜅=1 𝑛𝜅 is the total number of tests conducted, 𝑛𝜅 is the number of testing scenarios sampled from

𝑞(𝜅), and 𝑊 (𝜅) ∶= 𝑝∕𝑞(𝜅), for 𝜅 = 1,… , 𝑘 and 𝑘 = 1, 2,… . It is worth noting that various adaptive importance
sampling methods are available (see Bugallo et al. (2017) and references therein). We use Eq. (14) due to its simplicity,
effectiveness, and because it provides theoretical guarantees of consistency and approximate normality—properties
often lacking in most adaptive importance sampling approaches (Bugallo et al., 2017). In Section 4, we will show that
our method ensures both consistency and approximate normality under mild assumptions.
J. Yang et al.: Preprint submitted to Elsevier Page 7 of 16
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Algorithm 1: Adaptive testing with adaptive importance sampling
Input: naturalistic distribution 𝑝, surrogate maneuver challenges 𝑄𝑗 , 𝑗 = 1,… , 𝐽 , number of testing

scenarios 𝑛𝑘 at each update step 𝑘
Output: crash rate estimate

1 Initialize 𝑄𝜶(1) = (1∕𝐽 )
∑𝐽
𝑗=1𝑄𝑗 , 𝓁 = 1, 𝓁th = 0.3, 𝑘 = 1;

2 while 𝓁 > 𝓁th do
3 Compute 𝑞(𝑘) based on Eqs. (6) and (7) with 𝑄𝜶(𝑘) for 𝑄;
4 Sample 𝑛𝑘 testing scenarios from 𝑞(𝑘);
5 Estimate crash rate 𝜇̃(𝑘) using adaptive importance sampling via Eq. (14);
6 Set 𝓁 ← relative half-width of 𝜇̃(𝑘);
7 Set (𝑘) ← testing scenarios and results up to now;
8 Set 𝑘← 𝑘 + 1;
9 Train NeuDyM policy 𝜋(𝑘) based on Eq. (11);

10 Apply dense reinforcement learning to learn 𝑄(𝑘) using policy 𝜋(𝑘);
11 Solve the quadratic programming in Eq. (13) to update 𝜶(𝑘) (e.g., via CVXOPT (Andersen et al., 2004));
12 end
13 Return 𝜇̃(𝑘);

3.4. Adaptive testing algorithm
The adaptive testing process is summarized in Algorithm 1. The pipeline for update step 𝑘 (where 𝑘 > 1) is

(𝑘−1) (11)
←←←←←←←←←←←←←←←→ 𝜋(𝑘)

(12)
←←←←←←←←←←←←←←←→ 𝑄(𝑘) (13)

←←←←←←←←←←←←←←←→ 𝑄𝜶(𝑘)
(6) and (7)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑞(𝑘)

(14)
←←←←←←←←←←←←←←←→ ((𝑘), 𝜇̃(𝑘)). (15)

The core idea is to train the NeuDyM policies 𝜋(𝑘) using only safety-critical dynamics data and apply dense
reinforcement learning to learn the maneuver challenges 𝑄(𝑘). Next, the combination coefficients 𝜶(𝑘) are optimized
through solving a quadratic programming problem. Following this, the importance functions 𝑞(𝑘) are updated, and
testing scenarios are sampled from 𝑞(𝑘). Then the crash rate is estimated using adaptive importance sampling. This
iterative process continues until the termination criteria are met. We use the relative half-width (RHW) (Zhao et al.,
2016) as the stopping criterion, with the threshold set at 0.3.

4. Theoretical analysis
This section presents a theoretical analysis of the proposed adaptive testing method, covering the convergence

analysis of adaptive dense reinforcement learning in Subsection 4.1, the consistency analysis of adaptive testing in
Subsection 4.2, and the efficiency analysis of adaptive testing in Subsection 4.3.
4.1. Convergence analysis

First, we prove the convergence of adaptive dense reinforcement learning.
Assumption 1. The NeuDyM policies 𝜋(𝑘) converge to 𝜋† ∈ Π almost surely, i.e., ℙ𝑝

(

lim𝑘→∞ 𝜋(𝑘) = 𝜋†
)

= 1,

denoted as 𝜋(𝑘)
a.s.
←←←←←←←←←←←←←→ 𝜋†.

Assumption 2. The assumptions of Theorem 1 in Yang et al. (2024) hold for all 𝜋(𝑘), 𝑘 = 1, 2,… .

Theorem 1. Suppose that Assumptions 1 and 2 hold, then 𝑄(𝑘) a.s.
←←←←←←←←←←←←←→ 𝑄†, where 𝑄† ∶= 𝔼(𝜙,𝜋†)[𝑅𝑡∶𝑇 |𝑺 𝑡,𝑨𝑡] and 𝑡 is

any time step.

PROOF. From Assumption 1 we have 𝜋(𝑘) a.s.
←←←←←←←←←←←←←→ 𝜋†. Under Assumption 2, the dense reinforcement learning algorithm

will converge to 𝑄(𝑘) for any NeuDyM policy 𝜋(𝑘). Then, by the Lebesgue dominated convergence theorem, it follows
that 𝑄(𝑘) a.s.

←←←←←←←←←←←←←→ 𝑄†. □
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Corollary 1. If 𝜋(𝑘)
a.s.
←←←←←←←←←←←←←→ 𝜋 and Assumption 2 holds, then 𝑄(𝑘) a.s.

←←←←←←←←←←←←←→ 𝑄∗.

PROOF. This follows directly from Theorem 1. □

Remark 1. As shown in Theorem 1, if NeuDyM policies 𝜋(𝑘) can converge to some policy 𝜋† (not necessarily optimal)
almost surely and Assumption 2 holds, then 𝑄(𝑘) will converge to 𝑄† almost surely. Assumption 2 is necessary to
ensure the convergence of dense reinforcement learning. Since NeuDyM is a deep neural network, it can approximate
AV’s driving policy 𝜋 well given infinite training data, though convergence to 𝜋 cannot be guaranteed. Nonetheless,
Corollary 1 shows that if 𝜋(𝑘) converges to 𝜋 almost surely and Assumption 2 holds, then 𝑄(𝑘) will converge to 𝑄∗

almost surely.

4.2. Consistency analysis
Next, we prove the consistency of the proposed adaptive testing method, i.e., 𝜇̃(𝑘) a.s.

←←←←←←←←←←←←←→ 𝜇 as 𝑘 → ∞. The proof is
based on Lemma 1 (Oh and Berger, 1992). To elaborate on this lemma, we define some notations used in Oh and Berger
(1992). Suppose the goal is to estimate 𝜂 = 𝔼𝑓 [𝜑], where 𝑓 is a probability distribution. Denote the parametric family
of importance functions as  ∶= {𝑔𝜆 ∶ 𝜆 ∈ Λ}, where Λ is the parameter space. At each update step 𝑘 = 1, 2,… ,
denote the parameter as 𝜆(𝑘) and the corresponding importance function as 𝑔(𝑘) ∶= 𝑔𝜆(𝑘) . The estimate for 𝜂 is given
by

𝜂̂(𝑘) = 1
𝑛(𝑘)

𝑘
∑

𝜅=1

𝑛𝜅
∑

𝑖=1

𝜑(𝑿𝜅,𝑖)𝑓 (𝑿𝜅,𝑖)
𝑔(𝜅)(𝑿𝜅,𝑖)

, 𝑿𝜅,𝑖 ∼ 𝑔(𝜅). (16)

Assumption 3. The importance functions 𝑔(𝑘), 𝑘 = 1, 2,… , have the same support as 𝑓 .

Assumption 4. The expectation 𝜂 = 𝔼𝑓 [𝜑] exists.

Assumption 5. The importance weights 𝑓∕𝑔(𝑘) are bounded for all 𝑘 = 1, 2,… .

Lemma 1. Suppose that Assumptions 3, 4 and 5 hold and 𝜑 has finite second moment, then 𝜂̂(𝑘)
a.s.
←←←←←←←←←←←←←→ 𝜂.

PROOF. This is the Theorem 3.1 in Oh and Berger (1992). □

Theorem 2. Let 𝜇̃(𝑘) be given by Eq. (14). Then we have 𝜇̃(𝑘)
a.s.
←←←←←←←←←←←←←→ 𝜇.

PROOF. The correspondence to Lemma 1 is established by associating 𝜑 with 𝕀𝐹 , 𝑓 with 𝑝, and 𝑔 with 𝑞. We then
verify Assumptions 3, 4 and 5 accordingly.
(1) Verification of Assumption 3. From Eq. (7), we know that 𝜓 (𝑘)(𝒂|𝒔) > 0 whenever 𝜙(𝒂|𝒔) > 0 for all 𝑘 = 1, 2,… .

Therefore, 𝑞(𝑘)(𝒙) > 0 whenever 𝑝(𝒙) > 0 for all 𝑘 = 1, 2,… , meaning that all 𝑞(𝑘) share the same support as 𝑝.
(2) Verification of Assumption 4. Clearly, 𝜂 = 𝔼𝑓 [𝜑] = 𝔼𝑝[𝕀𝐹 ] = 𝜇 exists.
(3) Verification of Assumption 5. The importance policy weight for any critical state 𝒔 ∈ 𝑐 is

𝑤(𝒂|𝒔) = 𝜙(𝒂|𝒔)

𝜖𝜙(𝒂|𝒔) + (1 − 𝜖)
𝑄(𝒔,𝒂)𝜙(𝒂|𝒔)

𝑉 (𝒔)

⩽ 𝜙(𝒂|𝒔)
𝜖𝜙(𝒂|𝒔)

= 1
𝜖
, ∀𝒂 ∈ .

(17)

Thus, the importance weight for all 𝒙 ∈  is given by
𝑊 (𝒙) =

∏

𝑡∈𝑐

𝑤(𝒂𝑡|𝒔𝑡) ⩽
1
𝜖𝐿
, (18)

where 𝐿 is the maximum number of critical time steps. Therefore, the importance weights 𝑊 (𝑘) are bounded by
1∕𝜖𝐿 for all 𝑘 = 1, 2,… .
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Note that (𝕀𝐹 )2 = 𝕀𝐹 , which implies that 𝕀𝐹 has finite second moment. Thus, the theorem follows. □

Remark 2. As shown in Theorem 2, our adaptive testing method converges to the true crash rate almost surely. This
is achieved primarily by employing the defensive importance sampling paradigm in Eq. (7), where we incorporate
the naturalistic policy 𝜙 with probability 𝜖, which ensures that Assumptions 3 and 5 are satisfied. Furthermore, since
𝜂 = 𝔼𝑓 [𝜑] = 𝔼𝑝[𝕀𝐹 ] = 𝜇 represents the crash rate we aim to estimate, Assumption 4 is clearly met.

4.3. Efficiency analysis
Finally, we analyze the efficiency of the adaptive testing method. In addition to Assumptions 3, 4 and 5, we also

require the following two additional assumptions.
Assumption 6. The parameters 𝜆(𝑘) converge to 𝜆† ∈ Λ almost surely, i.e., 𝜆(𝑘)

a.s.
←←←←←←←←←←←←←→ 𝜆†.

Assumption 7. Given Assumption 6, the importance functions 𝑔(𝑘) converge to 𝑔𝜆† almost surely, i.e., 𝑔(𝑘)
a.s.
←←←←←←←←←←←←←→ 𝑔𝜆† .

Lemma 2. Suppose that Assumptions 3, 4, 5, 6 and 7 hold, 𝜑 has finite fourth moment, and
∑𝑘
𝜅=1 𝑛

2
𝜅∕

(

𝑛(𝑘)
)2

→ 0 as
𝑘→ ∞. Then

√

𝑛(𝑘)
(

𝜂̂(𝑘) − 𝜂
) d
←←←←←←→ 

(

0, 𝜎2𝑔𝜆†
)

, (19)

where
d
←←←←←←→ denotes convergence in distribution, and 𝜎2𝑔𝜆† ∶= Var𝑔𝜆† (𝜑𝑓∕𝑔𝜆† ).

PROOF. This is the Theorem 3.2 in Oh and Berger (1992). □

Theorem 3. Let 𝜇̃(𝑘) be given by Eq. (14). Suppose that Assumptions 1 and 2 hold, and
∑𝑘
𝜅=1 𝑛

2
𝜅∕

(

𝑛(𝑘)
)2

→ 0 as
𝑘→ ∞. Then

√

𝑛(𝑘)
(

𝜇̃(𝑘) − 𝜇
) d
←←←←←←→ 

(

0, 𝜎2𝑞†
)

, (20)

where 𝜎2
𝑞†

∶= Var𝑞† (𝕀𝐹 𝑝∕𝑞†) and 𝑞† is given by Eqs. (6) and (7) with 𝑄† in place of 𝑄.

PROOF. The correspondence to Lemma 2 follows from associating 𝜑 with 𝕀𝐹 , 𝑓 with 𝑝, 𝑔 with 𝑞, and 𝜆 with 𝑄. In
the proof of Theorem 2, the Assumptions 3, 4 and 5 have already been verified. Therefore, we only need to verify the
remaining Assumptions 6 and 7.
(1) Verification of Assumption 6. Given Assumptions 1 and 2, Theorem 1 establishes that 𝑄(𝑘) a.s.

←←←←←←←←←←←←←→ 𝑄†. Hence,
Assumption 6 holds.

(2) Verification of Assumption 7. Since 𝑄(𝑘) a.s.
←←←←←←←←←←←←←→ 𝑄†, by the Lebesgue dominated convergence theorem, we have

𝑞(𝑘)
a.s.
←←←←←←←←←←←←←→ 𝑞†.

Since (𝕀𝐹 )4 = 𝕀𝐹 , it is clear that 𝕀𝐹 has finite fourth moment, which concludes the proof of this theorem. □

Remark 3. Note that if 𝑛𝑘 ⩽ 𝑁 for some 𝑁 > 0 and for all 𝑘 = 1, 2,… , then we have

𝑘
∑

𝜅=1

(

𝑛𝜅
𝑛(𝑘)

)2
⩽ 𝑘

(𝑁
𝑘

)2
= 𝑁2

𝑘
→ 0, 𝑘→ ∞. (21)

This can be easily achieved if 𝑛𝑘 are the same for all 𝑘 = 1, 2,… . Theorem 3 shows that if 𝑞(𝑘) converge almost surely
to an importance function 𝑞† (not necessarily optimal), then the distributions of 𝜇̃(𝑘) converge to 

(

𝜇, 𝜎2
𝑞†
∕𝑛(𝑘)

)

.
This implies that as the importance functions are iteratively optimized, the asymptotic estimation variances of crash
rates decrease and eventually converge to 𝜎2

𝑞†
. The closer the importance functions are optimized toward 𝑞∗, the more

the estimation variance is reduced, and the greater the improvement in estimation efficiency.
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(a) Four phases (I-IV) of overtaking scenarios.

BV
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R2

LV
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y

(b) Passing phase of overtaking scenarios (focus of this paper).

Figure 3: Illustrations of (a) the four phases of overtaking scenarios and (b) the passing phase (Phase II). In overtaking scenarios,
the AV overtakes both BV and LV. While AV is engaged in passing, BV may overtake LV.

5. Results
This section begins by detailing the overtaking scenarios in Subsection 5.1. Following that, Subsection 5.2 presents

and analyzes the testing and evaluation results across NDE, NADE, and adaptive testing.
5.1. Overtaking scenarios

As illustrated in Fig. 3, we focus on the passing phase of overtaking scenarios, where a slower-moving lead
vehicle (LV) travels ahead of the background vehicle (BV), and the AV is attempting to overtake both BV and LV.
During this process, BV may also attempt to overtake LV, which could lead to a rear-end crash between AV and
BV. The state of the overtaking scenario is defined as 𝒔 ∶= [𝑣BV, 𝑅1, 𝑅̇1, 𝑅2, 𝑅̇2]⊤, where 𝑅1 ∶= 𝑥LV − 𝑥BV,
𝑅̇1 ∶= 𝑣LV − 𝑣BV, 𝑅2 ∶= 𝑥BV − 𝑥AV, and 𝑅̇2 ∶= 𝑣BV − 𝑣AV. The action is defined as the accelerations of LV
and BV, 𝒂 ∶= [𝑎LV, 𝑎BV]⊤. Here, 𝑥, 𝑣 and 𝑎 refer to the longitudinal position, velocity, and acceleration, respectively,
with the subscripts corresponding to each specific vehicle. The simulation runs for a maximum of 20 seconds with a
time resolution of 0.1 seconds. Typically, overtaking scenarios involve more than 1,400 dimensions (201 time steps,
each with 5 state variables and 2 action variables), presenting the high-dimensionality challenge.
5.2. Testing and evaluation results

In this subsection, we analyze the testing and evaluation results of NDE, NADE and adaptive testing. The generation
of NDE and NADE adheres to the methodology outlined in Feng et al. (2021)1. To show the generalizability of our
method, we select three distinct AVs:
(1) AV-I: the intelligent driver model (Ro et al., 2017);
(2) AV-II: the intelligent driver model calibrated in Sangster et al. (2013);
(3) AV-III: the agent trained by proximal policy optimization (Schulman et al., 2017).
We use three archetypes of SMs that capture a range of driving behaviors:
(1) SM-I: the intelligent driver model (same as AV-I);
(2) SM-II: the full velocity difference model (Ro et al., 2017) with 𝑎min = −1 m/s2;
(3) SM-III: the full velocity difference model with 𝑎min = −6 m/s2.
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Figure 4: The crash rate estimations for (a) AV-I, (b) AV-II, and (c) AV-III in NDE and NADE, and corresponding RHWs for (d)
AV-I, (e) AV-II, and (f) AV-III.

To enhance the robustness of crash rate estimation in NADE, we use three maneuver challenges, 𝑄1, 𝑄2, and 𝑄3,
pre-trained with SM-I, SM-II, and SM-III, respectively, with equal combination coefficients to establish the importance
function. Specifically, the importance function is given by Eqs. (6) and (7) with (𝑄1+𝑄2+𝑄3)∕3 in place of𝑄. Fig. 4
displays the crash rate estimations and the corresponding RHWs for AV-I, AV-II, and AV-III in NDE and NADE. It
can be seen that, across all three AVs, NADE converges to the same crash rate estimate as NDE, while requiring far
fewer tests to reach the 0.3 RHW threshold. Although using multiple pre-trained maneuver challenges with average
combination coefficients can enhance the evaluation robustness of NADE, it may reduce evaluation efficiency since
such a configuration is not tailored for any specific AV under test.

To tackle this challenge, we continuously optimize the importance functions through the adaptive testing process.
The number of tests is set to 𝑛(𝑘) = 105 for each update step 𝑘 = 1, 2,… . The NeuDyM is implemented as a
multilayer perceptron (MLP) with three hidden layers, each containing 256 neurons. We employ the Adam optimizer
and the mean squared error (MSE) loss function, using the default hyperparameters provided in PyTorch 1.13.1
(Paszke et al., 2019), which are widely adopted in practice. Fig. 5 illustrates the MSEs in the NeuDyM training
process. While the MSEs for both the training and testing datasets show a downward trend, only our learning method
manages to reduce the MSE in safety-critical states, whereas the ordinary learning method fails to do so, with its
MSE actually increasing. Based on the learned NeuDyM policies, the maneuver challenges are then learned using
dense reinforcement learning, and the combination coefficients are optimized accordingly. Figs. 6(a)-(c) reveal that the
combination coefficients are effectively optimized. Notably, at 107 tests, the optimized coefficients for AV-I, AV-II,
and AV-III are 𝜶AV-I = [0.94, 0.03, 0.03]⊤ (with the ground truth 𝜶∗

AV-I = [1, 0, 0]⊤), 𝜶AV-II = [0.82, 0.17, 0.01]⊤, and
𝜶AV-III = [0.64, 0.03, 0.33]⊤, respectively. As the combination coefficients are optimized, the importance functions are
updated, and the testing results obtained from these importance functions are aggregated through adaptive importance
sampling.

1Link to source code: https://github.com/michigan-traffic-lab/Naturalistic-and-Adversarial-Driving-Environment.
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Figure 5: The (a) MSE on the training dataset, (b) MSE on the testing dataset and (c) MSE on safety-critical states throughout the
NeuDyM training process. The black curves represent the MSEs from the ordinary learning method, which uses all dynamics data,
while the red curves correspond to the MSEs from our method that learns with only safety-critical dynamics data.
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Figure 6: The combination coefficients optimized during adaptive testing for (a) AV-I, (b) AV-II, and (c) AV-III.

Table 3
Average required number of tests and average acceleration ratios for AV-I, AV-II and AV-III.

Methods AV-I (AAR) AV-II (AAR) AV-III (AAR)
NDE 1.32 × 108 7.20 × 107 1.59 × 108

NADE 5.11 × 106 (26) 2.09 × 106 (34) 5.63 × 106 (28)
Adaptive testing 2.75 × 106 (48) 1.49 × 106 (48) 3.68 × 106 (43)

To evaluate the performance of the adaptive testing method, we compare its results with those of NADE, as
illustrated in Fig. 7. Figs. 7(a)-(c) show that adaptive testing produces the same crash rate estimates as NADE for
all three AVs. However, as seen in Figs. 7(d)-(f), adaptive testing requires fewer tests than NADE to reach the 0.3
RHW threshold. To mitigate experimental stochasticity, we bootstrap the testing results by shuffling them 100 times.
The frequency distributions of the required number of tests are shown in Figs. 7(g)-(i), respectively. Table 3 presents
the average required number of tests and the average acceleration ratios (AARs) for NDE, NADE, and adaptive testing
across the three AVs, where AARs (given in parentheses) represent the ratio of the average number of tests required
by NADE and adaptive testing compared to NDE. Compared with NADE, adaptive testing reduces the required
number of tests by 46.17%, 29.01%, and 34.67% for AV-I, AV-II, and AV-III, respectively, demonstrating its significant
improvement in evaluation efficiency while maintaining robustness for diverse AVs.
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Figure 7: The crash rate estimations for (a) AV-I, (b) AV-II and (c) AV-III of NADE and adaptive testing, RHW of crash rate
estimations for (d) AV-I, (e) AV-II and (f) AV-III, and frequency distributions of bootstrapped required number of tests for (g) AV-I,
(h) AV-II and (i) AV-III.

6. Conclusion
This paper proposes an adaptive testing framework designed for continuous optimization of importance functions

throughout the large-scale testing process. Our method centers on learning NeuDyM policies from exclusively the
safety-critical dynamics data, then using dense reinforcement learning to optimize maneuver challenges based on the
learned dynamics. The adaptive testing framework is further enhanced by combining multiple pre-trained maneuver
challenges, optimizing their combination coefficients, and utilizing adaptive importance sampling techniques to assess
testing results across different importance functions. Experimental results, demonstrated in overtaking scenarios, show
that the proposed method significantly improves evaluation efficiency compared to both NDE and NADE. Future
research will explore expanding this approach to driving environments with continuous state and action spaces. This
work focuses primarily on the adaptive testing in the large-scale testing stage, highlighting the need for future research
on integrating all three adaptive testing stages.
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