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Intelligent testing environment generation for autonomous vehicles with implicit distributions
of traffic behaviors
Kun Ren, Jingxuan Yang, Qiujing Lu, Yi Zhang, Jianming Hu, Shuo Feng

• Autonomous Vehicle (AV) testing faces challenges due to complex, high-dimensional environments and the
black-box nature of AV models.

• Traditional methods, including naturalistic driving Environments and adversarial attacks, offer limited efficiency
and scenario diversity.

• Importance sampling addresses the inefficiency challenge but struggles with implicit distributions of traffic
behaviors in complex environments.

• We propose the Implicit Importance Sampling approach that generates intelligent testing environment under
implicit distributions of traffic behaviors, improving testing efficiency.

• IIS significantly accelerates AV testing and maintains reliable evaluation results with controlled bias, as
demonstrated by experiments on diverse NDE models.
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A B S T R A C T

The advancement of autonomous vehicles hinges significantly on addressing safety concerns and
obtaining reliable evaluation results. Testing the safety of autonomous vehicles is challenging
due to the complexity of the high-dimensional traffic environment and the rarity of safety-
critical events, often requiring billions of miles to achieve comprehensive validation, which is
inefficient and costly. Current approaches, such as accelerated testing using importance sampling,
aim to provide unbiased estimates of the performance of autonomous vehicles by generating a
new distribution of background vehicles’ behaviors based on an initial nominal distribution.
However, these methods require knowledge of the original distribution of traffic behaviors,
which is often difficult to obtain in practice. In response to these challenges, we introduce
a novel methodology termed implicit importance sampling (IIS). Unlike traditional methods,
IIS is designed to generate intelligent driving environments based on implicit distributions of
traffic behaviors where the true distributions are unknown or not explicitly defined. IIS method
leverages accept-reject sampling to construct an unnormalized proposal distribution, which
increases the likelihood of sampling adversarial cases. Through applying importance sampling
technique with unnormalized proposal distribution, IIS enhances testing efficiency and obtains
reliable and representative evaluation results as well. The bias caused by unnormalization is also
proved to be controlled and bounded.

1. Introduction
The development and deployment of autonomous vehicles (AVs) are expected to revolutionize transportation

by enhancing safety and reducing traffic congestion. However, ensuring the safety and reliability of AVs remains a
critical challenge due to several factors. First, the high-dimensionality, complexity, and stochastic nature of traffic
environments can lead to the "curse of dimensionality" (Feng et al., 2021c), making it difficult to explicitly model a
traffic environment. Second, the black-box nature of AV models makes their decision-making processes hard to predict
and limits their ability to handle scenarios beyond their training experience (Filos et al., 2020). Third, the presence
of long-tail events, which are rare but critical, plays a significant role, as these low-probability events are often the
ones that can lead to accidents (Liu and Feng, 2024). These events are referred to as safety-critical cases (Ding et al.,
2023) or corner cases (Sun et al., 2021). Traditional testing methods, which require AVs to drive billions of miles to
encounter a wide range of scenarios, are prohibitively time-consuming and inefficient (Kalra and Paddock, 2016).

To address this problem, researchers have developed several advanced testing methods. The most commonly
applied method is testing AVs in simulation of naturalistic driving environments (NDEs), which are often modeled
through rules or naturalistic driving data (NDD) that sampled from the real world (Feng et al., 2021c; Yan et al.,
2023). Many high-fidelity simulators integrate driving models as well, such as CARLA (Dosovitskiy et al., 2017),
AirSim (Shah et al., 2018), AADS (Li et al., 2019), and SUMO (Krajzewicz, 2010). However, NDD and NDE alone
are usually not sufficient to evaluate the performance of AVs due to the limitations in scenario diversity and the lack
of rare, safety-critical events. Therefore, methods such as clustering (Kruber et al., 2018; Wang and Zhao, 2018; Sun
et al., 2021) or random perturbation (Scanlon et al., 2021; Fang et al., 2020; Lu et al.; Liu and Feng, 2024) have been
used to augment datasets to obtain more safety-critical data from NDE or NDD. While preserving the naturalism of
generated scenarios, these methods face challenges in efficiency and diversity.
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Implicit Importance Sampling
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Figure 1: Overview of implicit importance sampling framework.

Adversarial attacks are another approach to generating data for AV testing. The main idea is to control the
background vehicles (BVs) to challenge AVs purposely. Adaptive stress testing (Koren and Kochenderfer, 2019;
Lee et al., 2020; Corso et al., 2019) aims to identify the most likely failure events for AVs by adaptively adjusting
test conditions based on the AVs performance. This method uses reinforcement learning to explore the possible
scenarios and focus on those that lead to AVs’ failures. Many other RL-based methods have also been proposed to
diversely search safety-critical traffic scenarios (Niu et al., 2023; Yang et al., 2024). Additionally, applying specific
disturbances to BVs is also a feasible approach (Hanselmann et al., 2022; Rempe et al., 2022; Hao et al., 2023),
in which techniques such as generative adversarial networks (GANs) (Goodfellow et al., 2014) and variational
autoencoders (VAEs) (Kingma and Welling, 2013) have been employed to generate both naturalistic and adversarial
driving scenarios. Furthermore, scenario library construction is also crucial. A recent study proposed a novel method,
leveraging Genetic Algorithm (GA) to efficiently construct diverse and critical traffic scenarios, thus contributing to
the development of a comprehensive scenario library (Zhao et al., 2023).

However, there is an expectation that we could efficiently evaluate the performance of AVs in contrast with human
drivers, for example, the accident rate under the same NDE. The aforementioned methods cannot achieve this because
only scenarios in a small area with a small number of vehicles can be generated instead of a continuous traffic flow.
Recent studies have introduced innovative approaches to address these issues (Riedmaier et al., 2020; Nalic et al.,
2020). For example, surrogate-based optimization methods leverage naturalistic driving data to create models that
simulate real-world scenarios, improving risk assessment accuracy (Zhang et al., 2022, 2023). The splitting technique
estimates small probability events by dividing the probability space into manageable segments, enhancing accuracy
and efficiency in rare safety scenarios (Cancela et al., 2009). Importance sampling has shown significant potential
for addressing the problem of rare events by focusing on generating critical cases that are more likely to lead to safety
violations, thus reducing the number of miles needed for testing (Owen, 2013; Cancela et al., 2009; Morris et al., 1996).
Works such as (Zhao et al., 2017; Feng et al., 2021c, 2023; Arief et al., 2022; Huang et al., 2019; Jiang et al., 2022)
have demonstrated the capacity of importance sampling to provide unbiased safety estimates, using the NDE modeled
as discrete distributions extracted from NDD. Feng et al. (2021c) introduced the concept of an intelligent testing
environment, which utilizes importance sampling methods to create naturalistic and adversarial driving environment
(NADE) for AV testing. This approach results in unbiased estimates of AV performance with greater efficiency than
NDE. Building upon this foundation, Feng et al. (2023) further improve testing efficiency through using reinforcement
learning to optimize the proposal distribution in importance sampling, thereby reducing sampling variance.

Despite the advantages of importance sampling, one of its key limitations is the requirement for a well-defined
nominal distribution to compute the proposal distribution and associated weights. In practice, however, it is often
challenging to obtain explicit models of the nominal distribution, especially in more complex NDEs where the
distribution may be implicit. This issue arises because NDEs are usually difficult to model explicitly due to the
high-dimensionality, complexity, and stochastic nature of traffic environments. In some simple cases, for example,
a fixed road network, NDE can be modelled explicitly (Zhao et al., 2017; Feng et al., 2021c; Arief et al., 2022; Huang
et al., 2019; Jiang et al., 2022). However, in most cases, NDEs are modelled using complex modesl, rules, or neural
networks (Yan et al., 2023; Niu et al., 2023; Rempe et al., 2022). As a result, the exact probabilities of events or
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Implicit Importance Sampling

behaviors are unknown, and we can only draw samples from the environments under an underlying yet unknown
probability distribution. This challenge is not unique to autonomous driving but is common across various domains
that involve testing of intelligent systems such as robotics.

In the domain of importance sampling, several approaches have been suggested to overcome this challenge,
such as approximating the weights through convex quadratic optimization rather than relying on the exact likelihood
ratio (O’Hagan, 1987; Henmi et al., 2007; Delyon and Portier, 2016; Liu and Lee, 2017; Oates et al., 2016). While
These methods have the advantage of reducing the variance of importance sampling and producing unbiased estimates,
they still depend on certain necessary information about the nominal distribution, such as the form of the distribution or
the derivatives of the probability density function. Therefore, there is a need for more generalizable approaches that can
handle the situations that only data can be sampled following the implicit distribution without any other information
related to probability density. Due to the rarity of safety-critical events, it is also prohibitively inefficient to estimate
the distribution by only sampling the data.

In response to these challenges, we introduce a novel approach called implicit importance sampling (IIS). Unlike
traditional methods, IIS is designed to generate the intelligent testing envrionment under implicit nominal distributions.
By identifying critical cases and leveraging accept-reject sampling (Neumann, 1951), the probability of sampling
critical cases is increased. Our method constructs an unnormalized proposal distribution using accept-reject sampling,
along with an associated unnormalized weight. This approach enables the efficient evaluation of AV performance, even
in the absence of a fully specified nominal distribution. Although this introduces some bias due to unnormalization, we
prove that this bias can be restricted to a controllable range, ensuring that the evaluation results remain reliable. This
allows for significantly accelerating testing, reducing the required number of test miles by several orders of magnitude.
Fig. 1 provides a schematic illustration of the proposed method.

Our contributions are threefold:

• We present a method capable of generating intelligent testing environments for NDEs with implicit distributions
of traffic behaviors.

• We prove that our method facilitates accelerated testing with controllable bias, providing a reliable range for bias
that ensures the reliability of evaluation results.

• We conducted experiments on two distinct NDE models to demonstrate the generalizability of our approach.
The results demonstrated significant acceleration in testing while maintaining a controlled level of bias, thereby
validating the effectiveness of IIS in diverse scenarios.

2. Preliminary work
This section provides an overview of existing methods related to NDE and NADE models, which are essential for

understanding the subsequent development of our approach.

2.1. Naturalistic driving environment (NDE)
Our algorithm for generating NADE is based on existing NDE models for sampling. It is necessary to represent

NDE first, as referred to in existing work (Feng et al., 2021c). NDE is represented by the combination of variables in
a traffic scenario, which may include the position and velocity of vehicles and the parameters of road or weather. The
NDE with 𝑁 vehicles and 𝑇 time steps can be represented as

𝐱 =
⎡⎢⎢⎣
𝐱1,1 ⋯ 𝐱1,𝑇
⋱ ⋯ ⋱
𝐱𝑁,1 ⋯ 𝐱𝑁,𝑇

⎤⎥⎥⎦ , 𝐱 ∈ 𝐗, (1)

where 𝐱𝑖,𝑗 represents the variables of the 𝑖-th vehicle at the 𝑗-th time step. This representation results in an extremely
high-dimensional variable. To handle the complexities associated with this high dimensionality, Markov Decision
Process (MDP) is used to simplify the distribution of 𝐱. In a dynamic traffic scenario, the state and action of the 𝑖-th
vehicle at the 𝑗-th time step are written as 𝐬𝑖 (𝑗) and 𝐮𝑖 (𝑗) respectively. The state and action of all vehicles at the 𝑗-th
time step are denoted as

𝐬 (𝑗) = [𝐬0 (𝑗) , 𝐬1 (𝑗) ,⋯ , 𝐬𝑁 (𝑗)],
𝐮 (𝑗) = [𝐮0 (𝑗) ,𝐮1 (𝑗) ,⋯ ,𝐮𝑁 (𝑗)].

(2)
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Implicit Importance Sampling

So a scenario can be represented as a MDP (Puterman, 1990):

𝐬 (0) → 𝐮 (0) → 𝐬 (1) → 𝐮 (1)⋯ → 𝐮 (𝑇 − 1) → 𝐬 (𝑇 ) . (3)

The distribution 𝑃 (𝐱) can be simplified as

𝑃 (𝐱) = 𝑃 (𝐬 (0))
𝑇∏

𝑘=0
𝑃 (𝐮 (𝑘) |𝐬 (𝑘))  (𝐬 (𝑘 + 1) |𝐬 (𝑘) ,𝐮 (𝑘)) , (4)

where  (⋅) is the state transition distribution.
Finally, our purpose is to evaluate the AV. To achieve this purpose, the performance of AV is measured by

calculating accident rate

𝑃 (𝐴) =
∑
𝐱∈𝐗

𝑃 (𝐴|𝐱)𝑃 (𝐱) , (5)

where𝐴 indicates the accident between AV and BVs. Given a driving environment 𝐱𝑖,𝑃
(
𝐴|𝐱𝑖) is estimated by counting

the number of accident events occurring during the test.

2.2. Naturalistic and adversarial Driving Environment (NADE)
To obtain more accidents and accelerate the AV testing process, NADE has been proposed in (Feng et al., 2021c).

The main idea is to increase the probability to sample 𝐱 that may lead to accidents. A proposal distribution 𝑞 (𝐱) is used
to replace 𝑃 (𝐱) to achieve this goal. And the key of this section is to design the distribution 𝑞 (𝐱). The form of 𝑞 (𝐱)
resembles that of 𝑃 (𝐱):

𝑞 (𝐱) = 𝑞 (𝐬 (0))
𝑇∏

𝑘=0
𝑞 (𝐮 (𝑘) |𝐬 (𝑘))  (𝐬 (𝑘 + 1) |𝐬 (𝑘) ,𝐮 (𝑘)) , (6)

where 𝑞 (𝐬 (0)) = 𝑃 (𝐬 (0)).
To increase the likelihood of encountering accidents, we aim to sample 𝐱 with a higher probability 𝑝 (𝐱) when the

conditional probability of an accident 𝑃 (𝐴|𝐱) is high, ideally close to 1. Accordingly, we aim to ensure that when
𝑃 (𝐴|𝐮, 𝐬) is higher, the corresponding action 𝐮 can be sampled with a higher probability, namely higher 𝑞 (𝐮|𝐬).

So the first step in obtaining 𝑞 (𝐱) is to calculate the criticality given state 𝐬. The criticality (Feng et al., 2021a,b) is
calculated as

𝐶 (𝐬) =
∑
𝐮

𝑃 (𝐴|𝐮, 𝐬)𝑃 (𝐮|𝐬) . (7)

Then adjust distribution 𝑃 (𝐮|𝐬) to obtain an expected 𝑞 (𝐮|𝐬). Because 𝑃 (𝐮|𝐬) is an explicit distribution whose
probability can be obtained, 𝑞 (𝐮|𝐬) can be designed by changing the value of probability directly according to the
criticality 𝐶 (𝐬).

2.3. AV performance evaluation in NADE
Accident rate is used to evaluate the performance of AV. The most direct method is testing an AV in NDE and

estimating 𝑃 (𝐴) by the Crude Monte Carlo (CMC) method (Mooney, 1997):

𝑃 (𝐴) = 𝔼𝑃 (𝑃 (𝐴|𝐱))
≈ 1

𝑛

𝑛∑
𝑖=1

𝑃
(
𝐴|𝐱𝑖) ≈ 𝑚

𝑛
, 𝐱𝑖 ∼ 𝑃 (𝐱) ,

(8)

where 𝑛 is the number of tests, 𝑚 is the number of accidents, and 𝐱𝑖 ∼ 𝑃 (𝐱) means that 𝐱𝑖 is sampled from naturalistic
distribution 𝑃 (𝐱).
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Implicit Importance Sampling

However, due to the extremely low accident rate in NDE, a huge number of tests are required to estimate 𝑃 (𝐴).
Based on NADE, 𝑃 (𝐴) can also be estimated more efficiently through the importance sampling method:

𝑃 (𝐴) = 𝔼𝑃 (𝑃 (𝐴|𝐱))
= 𝔼𝑞

(
𝑃 (𝐴|𝐱) 𝑃 (𝐱)

𝑞 (𝐱)

)
≈ 1

𝑛

𝑛∑
𝑖=1

𝑃
(
𝐴|𝐱𝑖) 𝑃

(
𝐱𝑖
)

𝑞
(
𝐱𝑖
) , 𝐱𝑖 ∼ 𝑞

(
𝐱𝑖
)
,

(9)

where 𝐱𝑖 ∼ 𝑞
(
𝐱𝑖
)

means that 𝐱𝑖 is sampled from naturalistic and adversarial distribution 𝑞 (𝐱). Here proposal
distribution 𝑞 (𝐱) is referred to as the importance distribution. The ratio of 𝑃 (𝐱) to 𝑞 (𝐱) is called weight:

𝑤 (𝐱) = 𝑃 (𝐱)
𝑞 (𝐱)

. (10)

𝑃 (𝐱) and 𝑞 (𝐱) have been simplified through MDP, so equation (9) can also be simplified as

𝑃 (𝐴) ≈ 1
𝑛

𝑛∑
𝑖=1

𝑃
(
𝐴|𝐱𝑖) 𝑇𝑖∏

𝑘=1

𝑃 (𝐮 (𝑘) |𝐬 (𝑘))
𝑞 (𝐮 (𝑘) |𝐬 (𝑘)) , 𝐱𝑖 ∼ 𝑞

(
𝐱𝑖
)
, (11)

where 𝑇𝑖 denotes the time-steps of the 𝑖-th test. While increasing the probability of sampling critical events, previous
work has demonstrated that the estimated result in equation (9) is unbiased. According to importance sampling
technique:

𝔼𝑞

(
1
𝑛

𝑛∑
𝑖=1

𝑃
(
𝐴|𝐱𝑖) 𝑃

(
𝐱𝑖
)

𝑞
(
𝐱𝑖
) ) = 𝔼𝑞

(
𝑃 (𝐴|𝐱) 𝑃 (𝐱)

𝑞 (𝐱)

)
= 𝔼𝑃 (𝑃 (𝐴|𝐱)) . (12)

So we can get an accurate testing result of AV performance in NADE.

3. Methodology
3.1. Generation of testing environment

It is easy to see that the preliminary method relies on explicit distribution 𝑞 (𝐱), which may be limited in complex and
high-dimensional scenarios. To address this, we introduce a method that operates with implicit distributions, allowing
for greater flexibility and adaptability in generating NADE and accelerating testing.

Because 𝑃 (𝐮|𝐬) is an implicit distribution whose probability cannot be calculated, we design and sample from
𝑞 (𝐮|𝐬) with the help of accept-reject sampling (Neumann, 1951). The distribution 𝑞 (𝐮|𝐬) is designed as

𝑞 (𝐮|𝐬) = 𝑞𝑢 (𝐮|𝐬)∫ 𝑞𝑢 (𝐮|𝐬)d𝐮 ,
𝑞𝑢 (𝐮|𝐬) = 𝐾 (𝐮, 𝐬)𝑃 (𝐮|𝐬) ,
𝐾 (𝐮, 𝐬) =

⎧⎪⎨⎪⎩
𝐾0 = 1, if 𝐶 (𝐬) = 0
𝐾1 > 1, if 𝐶 (𝐬) ≠ 0 and 𝑃 (𝐴|𝐮, 𝐬) > 0
𝐾2 < 1, if 𝐶 (𝐬) ≠ 0 and 𝑃 (𝐴|𝐮, 𝐬) = 0

,

(13)

where 𝑞𝑢 (𝐮|𝐬) represents the unnormalized distribution because ∫ 𝐾 (𝐮, 𝐬)𝑃 (𝐮|𝐬)d𝐮 cannot be ensured to equal to 1.
𝐶(𝐬) denotes the criticality of state 𝐬 and 𝐶(𝐬) ≠ 0 means there is a possibility of an accident.

To sample from 𝑞𝑢 (𝐮|𝐬) while 𝐶 (𝐬) ≠ 0, accept-reject sampling method is used to just continually sample
𝐮 ∼ 𝑃 (𝐮|𝐬), until a sample result is accepted with the accept probability:

𝑃acc (𝐮|𝐬) = 𝑞𝑢 (𝐮|𝐬)
𝐾1𝑃 (𝐮|𝐬) = 𝐾 (𝐮|𝐬)

𝐾1

=

⎧⎪⎨⎪⎩
1, if 𝐶 (𝐬) ≠ 0 and 𝑃 (𝐴|𝐮, 𝐬) > 0

𝐾2
𝐾1

, if 𝐶 (𝐬) ≠ 0 and 𝑃 (𝐴|𝐮, 𝐬) = 0
.

(14)
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Figure 2: A illustration of how to design proposal distribution.

This can ensure that the sample results obey distribution 𝑞𝑢 (𝐮|𝐬).
Fig. 2 illustrates how to adjust 𝑃 (𝐮|𝐬) to obtain expected 𝑞𝑢 (𝐮|𝐬). The red and blue curves in the figure illustrate the

distributions 𝑃 (𝐮|𝐬) and 𝑞 (𝐮|𝐬), respectively. To ensure the driving environment is both adversarial and naturalistic,
only if criticality 𝐶 (𝐬) is not zero will the action 𝐮 be sampled in 𝑞 (𝐮|𝐬), else in 𝑞 (𝐮|𝐬). So, as shown in Fig. 2a,
𝑞𝑢 (𝐮|𝐬) is equal to 𝑃 (𝐮|𝐬) at uncritical state. On the other hand, while 𝐶 (𝐬) ≠ 0, 𝐾1 > 1 will act on the part of
𝑃 (𝐴|𝐮, 𝐬) > 0, just as shown in Fig. 2b. So the probability of 𝐮 that satisfy 𝑃 (𝐴|𝐮, 𝐬) > 0 can be increased, meaning
that the probability of event 𝐴 can be increased.

Meanwhile, 𝐾1 also causes the integral area of the probability density function to not be equal to 1. So 𝐾2 < 1 are
used for balancing. However, the value of ∫ 𝐾 (𝐮, 𝐬)𝑃 (𝐮|𝐬)d𝐮 varies for different states 𝐬. Coupled with the implicit
feature of 𝑃 (𝐮|𝐬), it can be challenging to choose appropriate values for 𝐾1 and 𝐾2. Therefore, while sampling 𝐮, the
unnormalized distribution 𝑞𝑢 (𝐮|𝐬) is used to replace 𝑞 (𝐮|𝐬), as shown in equation (14). Unnormalization affects only
the accident rate statistics, not the sampling results, which will be discussed in the next section.

3.2. AV performance evaluation
Importance sampling relies on explicit distributions to calculate weights. But in this paper we can only get an

unnormalized weight 𝑤𝑢 (𝐱). The unnormalized weight at the 𝑖-th test is calculated as:

𝑤𝑢
(
𝐱𝑖
)
=

𝑃
(
𝐱𝑖
)

𝑞𝑢
(
𝐱𝑖
) =

𝑇𝑖∏
𝑘=1

𝑃 (𝐮 (𝑘) |𝐬 (𝑘))
𝑞𝑢 (𝐮 (𝑘) |𝐬 (𝑘)) =

𝑇𝑖∏
𝑘=1

𝑤𝑢,𝑖𝑘,

𝑤𝑢,𝑖𝑘 =
𝑃 (𝐮 (𝑘) |𝐬 (𝑘))
𝑞𝑢 (𝐮 (𝑘) |𝐬 (𝑘)) = 1

𝐾 (𝐮 (𝑘) , 𝐬 (𝑘))
,

(15)

where 𝑇𝑖 denotes the time-steps of the 𝑖-th test and 𝑤𝑖𝑘 represents the weight at 𝑘-th time step during 𝑖-th test.
At an uncritical state 𝐬 whose criticality 𝐶 (𝐬) is 0, we have 𝑃 (𝐮|𝐬) = 𝑞 (𝐮|𝐬) and so that its weight is 1. So only

critical states need to be considered when calculating weight. 𝑇𝑖,𝐶 denotes the set of critical time steps during 𝑖-th test,
then

𝑤𝑢
(
𝐱𝑖
)
=

∏
𝑘∈𝑇𝑖,𝐶

𝑤𝑢,𝑖𝑘. (16)

Therefore, we can get an estimation of 𝑃 (𝐴):

𝜇𝑞𝑢 = 𝔼𝑞
(
𝑃 (𝐴|𝐱)𝑤𝑢

(
𝐱𝐢
))

. (17)
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Implicit Importance Sampling

We use 𝜇̂𝑞𝑢 to represent importance sampling estimation of 𝜇𝑞𝑢 :

𝜇̂𝑞𝑢 =
1
𝑛

𝑛∑
𝑖=1

𝑃
(
𝐴|𝐱𝑖)𝑤𝑢

(
𝐱𝐢
)
, 𝐱𝐢 ∼ 𝑞 (𝐱) . (18)

While sampling efficiency can be ensured to be higher than NDE, it cannot be ensured that 𝜇̂𝑞𝑢 is an unbiased
estimation of 𝑃 (𝐴) because 𝜇𝑞𝑢 is obviously not equal to 𝑃 (𝐴) in equation (9). But we have found that given suitable
parameters 𝐾1 and 𝐾2, we can obtain evaluation results almost identical to equation (9) efficiently. The next part will
elaborate on this and analyse the bias and variance of 𝜇𝑞𝑢 .

3.3. Theoretical analysis of bias
In this section, we discuss the bias between the estimation 𝜇𝑞𝑢 and 𝑃 (𝐴) and how to choose suitable parameters

𝐾1, 𝐾2 to decrease the bias. The source of bias between 𝑃 (𝐴) and 𝜇𝑞𝑢 is the difference between 𝑞𝑢 (𝐱) and 𝑞 (𝐱). We
define the coefficient 𝑐 (𝐱) as the ratio of 𝑞𝑢 (𝐱) to 𝑞 (𝐱):

𝑐 (𝐱) =
𝑞𝑢 (𝐱)
𝑞 (𝐱)

. (19)

Then we present the following theorems.

Theorem 1.

𝔼𝑞

(
𝜇̂𝑞𝑢

)
= 𝔼𝑃

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

)
. (20)

Proof.

𝔼𝑞

(
𝜇̂𝑞𝑢

)
= 𝔼𝑞

(
1
𝑛

𝑛∑
𝑖=1

𝑃
(
𝐴|𝐱𝐢)𝑤𝑢

(
𝐱𝐢
))

= 𝔼𝑞
(
𝑃 (𝐴|𝐱)𝑤𝑢 (𝐱)

)
= 𝔼𝑞

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑃 (𝐱)
𝑞 (𝐱)

)
= 𝔼𝑃

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

)
.

(21)

End of proof.

Remark 1. Theorem 1 demonstrates that 𝜇̂𝑞𝑢 provides an unbiased estimation of 𝔼
(
𝑃 (𝐴|𝐱)
𝑐(𝐱)

)
rather than 𝑃 (𝐴). This

indicates that while 𝜇̂𝑞𝑢 may not exactly estimate 𝑃 (𝐴), it estimates a quantity scaled by the ratio of 𝑞𝑢 (𝐱) to 𝑞 (𝐱). The
bias here arises from the mismatch between the proposal distribution 𝑞𝑢 (𝐱) and the true distribution 𝑞 (𝐱). Ideally, to
minimize this bias, 𝑐 (𝐱) should be as close to 1 as possible, ensuring that 𝜇̂𝑞𝑢 provides a better approximation of 𝑃 (𝐴).

Theorem 2. The bound of 𝑃 (𝐴) can be calculated as

𝔼𝑃

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐min (𝐱)
)

≤ 𝑃 (𝐴) ≤ 𝔼𝑃

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐max (𝐱)
)
, (22)

where 𝑐min (𝐱) and 𝑐max (𝐱) denotes the bound of 𝑐 (𝐱) during test 𝐱.

Proof.

𝔼𝑃

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐min (𝐱)
)

≤ 𝑃 (𝐴) = 𝔼𝑃

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐 (𝐱)
)

≤ 𝔼𝑃

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐max (𝐱)
)
. (23)

End of proof.
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Implicit Importance Sampling

Remark 2. Theorem 2 establishes bounds on 𝑃 (𝐴) based on the minimum and maximum values of the coefficient 𝑐 (𝐱).
This theorem provides a range within which the true value of 𝑃 (𝐴) lies. The bounds are calculated by incorporating
𝑐min (𝐱) and 𝑐max (𝐱), which represent the extremal values of 𝑐 (𝐱). By estimating these bounds through sampling results,
we can obtain a reliable range for 𝑃 (𝐴).

In the following content, we will detail the methods used to calculate the bound of 𝑃 (𝐴) as outlined in Theorem 2,
including how to estimate the bound of 𝑐 (𝐱). Further, we will describe the process for selecting the parameters 𝐾1 and
𝐾2 to control the bias in the estimation. This involves ensuring that 𝑐 (𝐱) remains close to 1, as discussed in Theorem
1, to ensure that the bound of 𝑃 (𝐴) is both accurate and reliable for evaluating the performance of AV.

We estimate the bound of 𝑃 (𝐴) using sampling results based on 𝑞 (𝐱):

𝔼𝑃

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐max (𝐱)
)

= 𝔼𝑞

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑃 (𝐱)
𝑞 (𝐱)

𝑐max (𝐱)
)

= 𝔼𝑞
(
𝑃 (𝐴|𝐱)𝑤𝑢 (𝐱) 𝑐max (𝐱)

)
≈ 1

𝑛

𝑛∑
𝑖=1

𝑃
(
𝐴|𝐱𝐢)𝑤𝑢

(
𝐱𝐢
)
𝑐max

(
𝐱𝐢
)
, 𝐱𝐢 ∼ 𝑞 (𝐱) ,

𝔼𝑃

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐min (𝐱)
)

≈ 1
𝑛

𝑛∑
𝑖=1

𝑃
(
𝐴|𝐱𝐢)𝑤𝑢

(
𝐱𝐢
)
𝑐min

(
𝐱𝐢
)
, 𝐱𝐢 ∼ 𝑞 (𝐱) .

(24)

And we record these estimations as

𝜇̂𝑞𝑢,min =
1
𝑛

𝑛∑
𝑖=1

𝑃
(
𝐴|𝐱𝐢)𝑤𝑢

(
𝐱𝐢
)
𝑐min

(
𝐱𝐢
)
,

𝜇̂𝑞𝑢,max =
1
𝑛

𝑛∑
𝑖=1

𝑃
(
𝐴|𝐱𝐢)𝑤𝑢

(
𝐱𝐢
)
𝑐max

(
𝐱𝐢
)
.

(25)

Introduce confidence level 𝜆 and standard deviation function std (⋅), then the bound of 𝑃 (𝐴) can be estimated as

𝑃 (𝐴) ≥ 𝔼𝑃

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐min (𝐱)
)

≥ 𝜇̂𝑞𝑢,min − 𝜆 ⋅ std
(
𝜇̂𝑞𝑢,min

)
= inf 𝑃 (𝐴),

𝑃 (𝐴) ≤ 𝔼𝑃

(
𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐max (𝐱)
)

≤ 𝜇̂𝑞𝑢,max − 𝜆 ⋅ std
(
𝜇̂𝑞𝑢,max

)
= sup𝑃 (𝐴).

(26)

For each test 𝐱𝑖, 𝑃
(
𝐴|𝐱𝑖)𝑤𝑢

(
𝐱𝑖
)

can be calculated based on the sample results. The key is to estimate the bound
of 𝑐

(
𝐱𝐢
)
. For test 𝐱𝑖, using 𝑐𝑖𝑘 to represent the normalization coefficient of 𝑞𝑢

(
𝐮𝑘|𝐬𝑘) at the 𝑘-th time step:

𝑐𝑖𝑘 = ∫ 𝑞𝑢
(
𝐮𝑘|𝐬𝑘)d𝐮k . (27)

It is straightforward to see that 𝑞
(
𝐮𝑘|𝐬𝑘) = 𝑞𝑢(𝐮𝑘|𝐬𝑘)

𝑐𝑖𝑘
. At time steps that are not critical, i.e., 𝑘 ∉ 𝑇𝑖,𝐶 , we have

𝑃
(
𝐮𝑘|𝐬𝑘) = 𝑞

(
𝐮𝑘|𝐬𝑘) = 𝑞𝑢

(
𝐮𝑘|𝐬𝑘) and therefore 𝑐𝑖𝑘 = 1. So for the entire sequence, 𝑐

(
𝐱𝑖
)

is given by the product∏
𝑘∈𝑇𝑖,𝐶 𝑐𝑖𝑘. Further, to estimate the bound of 1

𝑚
∑

𝑖∈𝑛𝐶
1

𝑐(𝐱𝑖)
, we calculate 𝑐𝑖𝑘 as

𝑐𝑖𝑘 = 𝐾1 ⋅𝐻1 (𝐬 (𝑘)) +𝐾2 ⋅𝐻2 (𝐬 (𝑘))
=
(
𝐾1 − 1

)
⋅𝐻1 (𝐬 (𝑘)) +𝐾2,

(28)

where

𝐻1 (𝐬 (𝑘)) = ∫𝐔𝐶

𝑞 (𝐮|𝐬 (𝑘))d𝐮,
𝐻2 (𝐬 (𝑘)) = 1 −𝐻1 (𝐬 (𝑘)) .

(29)
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Implicit Importance Sampling

𝐔𝑐 denotes the set of critical actions. So 𝐻1 represents the probability of critical action in the current state 𝐬𝑘. 𝐻1 (𝐬 (𝑘))
represents the probability of critical actions in state 𝐬𝑘, and 𝐻2 (𝐬 (𝑘)) is the coplementary probability. The geometric
meaning of 𝐻1 and 𝐻2 can be illustrated as the area of the right and left part of red area in Fig. 2b respectively.

Due to 𝑐𝑖𝑘 being linear respect to 𝐻1, so the minimum and maximum values of 𝑐𝑖𝑘 are respectively

min 𝑐𝑖𝑘 =
(
𝐾1 − 1

)
⋅min𝐻1 +𝐾2,

max 𝑐𝑖𝑘 =
(
𝐾1 − 1

)
⋅max𝐻1 +𝐾2.

(30)

Then

𝑐
(
𝑥𝑖
)
=

∏
𝑘∈𝑇𝑖,𝐶

𝑐𝑖𝑘 ≥ ∏
𝑘∈𝑇𝑖,𝐶

min 𝑐𝑖𝑘 =
(
min 𝑐𝑖𝑘

)𝑇𝑖,𝐶 ,

𝑐
(
𝑥𝑖
)
=

∏
𝑘∈𝑇𝑖,𝐶

𝑐𝑖𝑘 ≤ ∏
𝑘∈𝑇𝑖,𝐶

max 𝑐𝑖𝑘 =
(
max 𝑐𝑖𝑘

)𝑇𝑖,𝐶 ,
(31)

where superscript 𝑇𝑖,𝐶 denote the size of set 𝑇𝑖,𝐶 . Define

𝑐min
(
𝐱𝑖
)
=
(
min 𝑐𝑖𝑘

)𝑇𝑖,𝐶 ,

𝑐max
(
𝐱𝑖
)
=
(
max 𝑐𝑖𝑘

)𝑇𝑖,𝐶 .
(32)

Then the bound of 𝑃 (𝐴) in equation (26) can be calculated.
Equations (26), (30) and (32) provide practical methods for calculating the bound of 𝑃 (𝐴). We will next specify

𝐻1 and the parameters 𝐾1 and 𝐾2 in equation (30). 𝐻1 represents the probability of critical actions given critical states,
so it can be estimated within a range based on prior knowledge of the NDE. This paper provides different ranges for 𝐻1
depending on the NDE models through the analysis of NDE sample results and NDE model parameters. More detials
will be provided in the experimental chapter.

Given the range of 𝐻1, it is crucial to select 𝐾1, 𝐾2 to control the bound of 𝑃 (𝐴). As discussed in Theorem 1
and equation (32), the aim is to make 𝑐𝑖𝑘 as close to 1 as possible, and so do 𝑐 (𝐱). Suitable 𝐾1 and 𝐾2 will be chosen
according to the range of 𝐻1 and equation (30), to make min 𝑐𝑖𝑘 and max 𝑐𝑖𝑘 close to 1. More details on the range of
𝐻1 and the parameters 𝐾1, 𝐾2 used in the paper can also be found in the experimental chapter.

4. Experimental studies
To validate our method, we adapted our implicit importance sampling approach to two different NDE models based

on existing works (Feng et al., 2023; Yan et al., 2023). We refer to these environments as NDE-I and NDE-II in this
paper. Since the NDEs were generated based on naturalistic driving data, the evaluation results are representative of
real-world scenarios. And the scalability and generalizability of our approach were verified, as different types of NDE
models and varied road geometries were utilized in these experiments.

NDE-I is modelled with explicit and discrete distributions 𝑃 (𝐮|𝐬), where the value of 𝑃 (𝐮|𝐬) is known. Addition-
ally, the true value of the distribution 𝑞 (𝐮|𝐬) can be easily obtained through normalization, allowing us to calculate the
true weight values. We compared the experimental results using both the true weights and the unnormalized estimated
weights from IIS in NDE to demonstrate the validity of our method. All experiments on NDE-I were conducted on
a two-lane highway with a 400-meter driving distance for the AV. Each test episode concluded either when the AV
reached the 400-meter mark or an accident occurred.

On the other hand, NDE-II is based on a neural network, resulting in an implicit distribution 𝑃 (𝐮|𝐬). As the exact
distribution value is not accessible, only the sample results can be obtained, making implicit importance sampling
the sole applicable approach. We compared the experimental results using unnormalized estimated weights from IIS
with results in NDE to confirm that our method is effective for problems involving implicit distributions. We conducted
experiments in a roundabout environment, where the AV was tested for a 36-second driving duration or until an accident
occurred, or the AV exited the roundabout.

For performance metrics, we assessed both adversarialism and naturalism by comparing crash rates and key data
distributions between IIS and NDE. In the case of NDE-I, only risky data, which constitutes a small proportion, was
collected and analyzed to demonstrate that IIS generates more adversarial driving environments. For NDE-II, all driving
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Implicit Importance Sampling

data was collected and analyzed to prove that, despite the small amount of risk data, the generated NADE closely
resembles the original NDE. Also, we compared accident rates to verify the results of accelerated testing, showing that
our method can estimate accident rates more efficiently with controllable and acceptable biases.

In summary, our experiments validated three key aspects of our method:

• IIS is capable of generating NADE that increase adversarial scenarios while preserving the naturalistic properties
of the original driving environment.

• IIS achieves accelerated testing by efficiently estimating accident rates, particularly in cases where the nominal
distribution 𝑃 (𝐱) is implicit.

• Our method allows for controlled bias during estimation, and with appropriate parameter selection, we
demonstrate that the bias can be kept within a reliable range. Additionally, we provide guidelines for choosing
parameters to ensure reliable results.

4.1. Results analysis for NDE-I
Due to the discrete nature of NDE-I, we were able to directly obtain the probability of critical actions, namely 𝐻1,

directly during the sampling process. Based on data analysis from preliminary work (Feng et al., 2023), the range of 𝐻1
was determined to be

(
1 × 10−7, 5 × 10−5

)
. We set the parameters as 𝐾1 = 100, 𝐾2 = 0.99 and 𝐾1 = 500, 𝐾2 = 0.99
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Figure 3: Naturalistic and adversarial driving environment generation for NDE-I
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Implicit Importance Sampling

respectively, to ensure that 𝑐𝑖𝑘 approaches 1, as shown in equation (30). Although both 𝐾1 and 𝐾2 are involved, 𝐾2
is consistently set to 0.99, so the analysis in the paper focuses primarily on the variations in 𝐾1. For validation, we
conducted approximately 5 × 106 test episodes for the parameter setting 𝐾1 = 100, and 6 × 105 test episodes for the
setting 𝐾1 = 500, in the naturalistic and adversarial driving environments, while the corresponding number of episodes
in NDE was approximately 2 × 108. Fig. 3 visualizes the key data distributions with 𝐾1 = 500, 𝐾2 = 0.99, comparing
NDE with the NADE generated by IIS.

The first column of figures shows the distribution of crash types and near-miss incidents involving AV. We use
time-to-collision (TTC) and bumper-to-bumper distance to assess proximity between AV and background vehicles
(BVs). It is evident that the crash rate in NADE reached 2.45 × 10−05, significantly higher than the NDE’s crash rate
of 1.58 × 10−7. This result demonstrates that the environment generated by IIS is more adversarial. Additionally, the
near-miss distances and TTC values in the IIS-generated environment tend to cluster at lower values, further explaining
the increased frequency of accidents. Traffic flow distributions were altered, as the sample distribution 𝑞 (𝐱) replaced
the nominal distribution 𝑃 (𝐱).

One advantage of importance sampling is its ability to provide unbiased estimates by applying weights to the
samples. By applying the true weight 𝑤 (𝐱), we modified the distributions as shown in the second column of figures,
bringing them closer to the original NDE distribution. This indicates that importance sampling maintains unbiasedness
within a certain level of accuracy. However, in our work, 𝑃 (𝐱) is treated as an implicit distribution, and only
approximate, unnormalized weights can be calculated. As a result, the estimated outcomes inherently carry bias.
Despite this, our experiments show that the bias remains small under the given parameters, as demonstrated in the
final column of figures.

We also evaluated the crash rate estimation using IIS. A confidence level of 𝜆 = 0.95 was chosen for calculating
bounds and confidence intervals. Fig. 4 presents the evaluation results under two parameter settings. Fig. 4a and Fig.
4d depict the crash rate progression over time, with the shaded areas representing confidence intervals. Fig. 4b and Fig.
4e display the relative half-width (RHW) metric (Zhao et al., 2017), which is used to measure efficiency. The minimum
number of test episodes required to reach a precision threshold (RHW=0.3) was computed. For NDE, approximately
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Figure 4: AV performance evaluation for NDE-I
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Figure 5: Bias analysis of AV performance evaluation results for NDE-I

2.03 × 108 episodes were required. With 𝐾1 = 100, the number of tests required in the environment generated by IIS
was reduced to 2.34 × 106, accelerating the evaluation by a factor of 87. And the experimental results showed that
the estimated crash rate converges to the very similar value. When 𝐾1 = 500, only 4.32 × 105 tests were needed,
accelerating the evaluation by a factor of 470. However, this higher efficiency came at the cost of increased yet still
controlled bias in the crash rate estimate.

The results above demonstrate that our method significantly accelerates the evaluation process while provid-
ing a reliable estimation of the crash rate, even with some degree of bias. Then we further analyze the effi-
ciency, the range of bias, and the relationship between these outcomes and the parameter 𝐾1. The range of 𝐻1
lies between

(
1 × 10−7, 5 × 10−5

)
, leading to the corresponding values of

(
min 𝑐𝑖𝑘,max 𝑐𝑖𝑘

)
being approximately

(0.9900099, 0.99495) for 𝐾1 = 100 and (0.9900499, 1.01495) for 𝐾1 = 500. Given that 𝑐𝑖𝑘 remains close to 1, we can
ensure that the bias is kept within a controllable range. We also computed the bounds for the estimated crash rate and
displayed them in Fig. 5, where the shaded area represents the bounds of 𝑃 (𝐴) calculated using equation (26). While
a larger 𝐾1 increases the probability of encountering riskier scenarios, it also results in a looser bound on 𝑐 (𝐱). Thus,
𝐾1 = 500 achieved greater efficiency but with a slightly larger bias. The optimal value of 𝐾1 should be selected based
on the trade-offs between efficiency and accuracy.

4.2. Results analysis for NDE-II
NDE-II is based on a neural network, so the probability of critical actions cannot be directly obtained. Based on

an analysis of crash criticality provided by preliminary work (Yan et al., 2023), the range of 𝐻1 was estimated to be(
4.5 × 10−5, 3 × 10−3

)
. We then set the parameters as 𝐾1 = 50, 𝐾2 = 0.99 and 𝐾1 = 100, 𝐾2 = 0.99, respectively.

For validation, we collected approximately 4 × 105 test episodes under both parameter settings in NADE, while about
1 × 107 episodes were tested in NDE. In Fig. 6, we visualized the distribution of key data with 𝐾1 = 50, 𝐾2 = 0.99.

The crash rate in NADE reached 4.72 × 10−4, significantly higher than in NDE (5.21 × 10−6), demonstrating
the adversarial nature of the generated environment. After applying the weighting adjustments, the crash rate in
NADE was modified to 4.66 × 10−6, as shown in Fig. 6b. This modification results in a slight bias due to the use
of unnormalized weights, but it remains within a reasonable range for practical purposes. Fig. 6c, Fig. 6b, and Fig.
6e show the distribution of distance between vehicles and vehicle speeds, respectively. The KL-divergence values of
the distributions were 0.002, 0.004, and 0.003, respectively, indicating that the generated NADE closely resembles
NDE. This is reasonable because only the behavior of critical vehicles at specific moments, representing an extremely
small proportion of the data, was altered, while the overall driving environment remained consistent with naturalistic
conditions.

Similar to the analysis in Chapter 4.1, we estimated the accident rates and plotted the results in Fig. 7. In NDE,
approximately 5.87 × 106 tests were required to reach the desired precision. With 𝐾1 = 50, our method required only
1.24 × 105 tests, accelerating the evaluation by a factor of 47. For 𝐾1 = 100, only 8.05 × 104 tests were required,
resulting in a speed-up of 73 times. Although a larger 𝐾1 leads to higher evaluation efficiency, it also introduces a
slight bias in the results. We further calculated the bounds of the estimated crash rates, which are visualized in Fig. 8,
showing the trade-off between efficiency and accuracy when choosing different values of 𝐾1.
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Figure 6: Naturalistic and adversarial driving rnvironment generation for NDE-II
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Figure 7: AV performance evaluation for NDE-II
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Figure 8: Bias analysis of AV performance evaluation results for NDE-II

5. Conclusion and Future Work
In this paper, we introduce a novel Implicit Importance Sampling (IIS) approach designed to enhance the

intelligent testing environment for autonomous vehicles (AVs). Our method generates testing environments that are
more adversarial, which allows for accelerated testing and provides reliable and representative evaluation results.
We validated our approach through experiments on two different NDE models, demonstrating its scalability and
effectiveness. Our method is effective for any NDE model that testing scenarios can be sampled, even if the NDE
model is implicit or not well defined. This versatility highlights the potential of IIS to address common challenges in
testing not only autonomous vehicles but also other intelligent agents in complex environments.

Future work will focus on reducing bias by improving our method’s parameter selection process. Currently, our
approach uses some prior knowledge-based assumptions to choose reasonable parameters and minimize bias. The
next step is to develop adaptive parameter selection techniques to further reduce error and eliminate dependence on
these assumptions. This enhancement will make our method more robust and accurate, leading to more reliable testing
outcomes for autonomous vehicles and other intelligent systems.
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