
Transportation Research Part C 174 (2025) 105106 

A
0

 

Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier.com/locate/trc  

Intelligent testing environment generation for autonomous vehicles 
with implicit distributions of traffic behaviors
Kun Ren , Jingxuan Yang , Qiujing Lu , Yi Zhang , Jianming Hu ∗, 
Shuo Feng ∗

Department of Automation, Tsinghua University, 100084, Beijing, China

A R T I C L E  I N F O

Keywords:
Autonomous vehicles
Importance sampling
Accelerated testing

 A B S T R A C T

The advancement of autonomous vehicles hinges significantly on addressing safety concerns and 
obtaining reliable evaluation results. Testing the safety of autonomous vehicles is challenging 
due to the complexity of the high-dimensional traffic environment and the rarity of safety-
critical events, often requiring billions of miles to achieve comprehensive validation, which 
is inefficient and costly. Current approaches, such as accelerated testing using importance 
sampling, aim to provide unbiased estimates of the performance of autonomous vehicles by 
generating a new distribution of background vehicles’ behaviors based on an initial nominal 
distribution. However, these methods require knowledge of the original distribution of traffic 
behaviors, which is often difficult to obtain in practice. In response to these challenges, we 
introduce a novel methodology termed implicit importance sampling (IIS). Unlike traditional 
methods, IIS is designed to generate intelligent driving environments based on implicit dis-
tributions of traffic behaviors where the true distributions are unknown or not explicitly 
defined. IIS method leverages accept-reject sampling to construct an unnormalized proposal 
distribution, which increases the likelihood of sampling adversarial cases. Through applying 
importance sampling technique with unnormalized proposal distribution, IIS enhances testing 
efficiency and obtains reliable and representative evaluation results as well. The bias caused by 
unnormalization is also proved to be controlled and bounded.

1. Introduction

The development and deployment of autonomous vehicles (AVs) are expected to revolutionize transportation by enhancing 
safety and reducing traffic congestion. However, ensuring the safety and reliability of AVs remains a critical challenge due to 
several factors. First, the high-dimensionality, complexity, and stochastic nature of traffic environments can lead to the ‘‘curse of 
dimensionality’’ (Feng et al., 2021c), making it difficult to explicitly model a traffic environment. Second, the black-box nature of 
AV models makes their decision-making processes hard to predict and limits their ability to handle scenarios beyond their training 
experience (Filos et al., 2020). Third, the presence of long-tail events, which are rare but critical, plays a significant role, as these 
low-probability events are often the ones that can lead to accidents (Liu and Feng, 2024). These events are referred to as safety-
critical cases (Ding et al., 2023) or corner cases (Sun et al., 2021). Traditional testing methods, which require AVs to drive billions 
of miles to encounter a wide range of scenarios, are prohibitively time-consuming and inefficient (Kalra and Paddock, 2016).
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To address this problem, researchers have developed several advanced testing methods. The most commonly applied method is 
testing AVs in simulation of naturalistic driving environments (NDEs), which are often modeled through rules or naturalistic driving 
data (NDD) that sampled from the real world (Feng et al., 2021c; Yan et al., 2023; Duan et al., 2024). Many high-fidelity simulators 
integrate driving models as well, such as CARLA (Dosovitskiy et al., 2017), AADS (Li et al., 2019), and SUMO (Krajzewicz, 2010). 
However, NDD and NDE alone are usually not sufficient to evaluate the performance of AVs due to the limitations in scenario 
diversity and the lack of rare, safety-critical events. Therefore, methods such as clustering (Kruber et al., 2018; Wang and Zhao, 
2018; Sun et al., 2021) or random perturbation (Scanlon et al., 2021; Fang et al., 2020; Lu et al.; Liu and Feng, 2024) have been used 
to augment datasets to obtain more safety-critical data from NDE or NDD. While preserving the naturalism of generated scenarios, 
these methods face challenges in efficiency and diversity. Adversarial attacks generate AV testing data by purposely controlling 
background vehicles (BVs) to challenge AVs. Many RL-based methods have been proposed to diversely search safety-critical traffic 
scenarios (Koren and Kochenderfer, 2019; Lee et al., 2020; Corso et al., 2019; Niu et al., 2023). Applying specific disturbances 
to BVs is also a feasible approach (Hanselmann et al., 2022; Rempe et al., 2022; Hao et al., 2023). Additionally, scenario library 
construction methods, such as using Genetic Algorithms (GA), efficiently create diverse and critical traffic scenarios (Zhao et al., 
2023; Jiang et al., 2024).

However, there is an expectation that we could efficiently evaluate the performance of AVs in contrast with human drivers, for 
example, the accident rate under the same NDE. The aforementioned methods cannot achieve this because only scenarios in a small 
area with a small number of vehicles can be generated instead of a continuous traffic flow. Recent studies have introduced innovative 
approaches to address these issues (Riedmaier et al., 2020; Nalic et al., 2020). For example, surrogate-based optimization methods 
leverage naturalistic driving data to create models that simulate real-world scenarios, improving risk assessment accuracy (Zhang 
et al., 2022, 2023). The splitting technique estimates small probability events by dividing the probability space into manageable 
segments, enhancing accuracy and efficiency in rare safety scenarios (Cancela et al., 2009). Importance sampling has shown 
significant potential for addressing the problem of rare events by focusing on generating critical cases that are more likely to 
lead to safety violations, thus reducing the number of miles needed for testing (Owen, 2013; Cancela et al., 2009; Morris et al., 
1996). Works such as Zhao et al. (2017), Feng et al. (2021c, 2023), Arief et al. (2022), Huang et al. (2019) and Jiang et al. (2022) 
have demonstrated the capacity of importance sampling to provide unbiased safety estimates, using the NDE modeled as discrete 
distributions extracted from NDD. Feng et al. (2021c) introduced the concept of an intelligent testing environment, which utilizes 
importance sampling methods to create naturalistic and adversarial driving environment (NADE) for AV testing. This approach 
results in unbiased estimates of AV performance with greater efficiency than NDE. Building upon this foundation, Feng et al. 
(2023) further improve testing efficiency through using reinforcement learning to optimize the proposal distribution in importance 
sampling, thereby reducing sampling variance.

Despite the advantages of importance sampling, one of its key limitations is the requirement for a well-defined nominal 
distribution to compute the proposal distribution and associated weights. In practice, however, it is often challenging to obtain 
explicit models of the nominal distribution, especially in more complex NDEs where the distribution may be implicit. This issue 
arises because NDEs are usually difficult to model explicitly due to the high-dimensionality, complexity, and stochastic nature of 
traffic environments. In some simple cases, for example, a fixed road network, NDE can be modeled explicitly (Zhao et al., 2017; Feng 
et al., 2021c; Arief et al., 2022; Huang et al., 2019; Jiang et al., 2022). However, in most cases, NDEs are modeled using complex 
models, rules, or neural networks (Yan et al., 2023; Rempe et al., 2022; Mo et al., 2021; Liu et al., 2022). For instance, if NDE is 
constructed using a neural network, and the network outputs both the mean and variance of the samples, then we can utilize the 
Gaussian distribution to obtain the probability density values. In this case, the distribution becomes explicit. However, if the neural 
network is treated as a black-box model, where we only obtain the sampled outputs but not the underlying probability density value, 
then NDE is an implicit distribution. Furthermore, if NDE is constructed by combining a neural network with certain rules, where 
the network’s output is adjusted according to these rules, the probability density values of the output are also unknown, making it 
an implicit distribution. As a result, the exact probabilities of events or behaviors are unknown, and we can only draw samples from 
the environments under an underlying yet unknown probability distribution. This challenge is not unique to autonomous driving 
but is common across various domains that involve testing of intelligent systems such as robotics.

Also, in the domain of importance sampling, several approaches have been suggested to overcome this challenge, such as 
approximating the weights through convex quadratic optimization rather than relying on the exact likelihood ratio (O’Hagan, 1987; 
Henmi et al., 2007; Delyon and Portier, 2016; Liu and Lee, 2017; Oates et al., 2016). While These methods have the advantage of 
reducing the variance of importance sampling and producing unbiased estimates, they still depend on certain necessary information 
about the nominal distribution, such as the form of the distribution or the derivatives of the probability density function. Therefore, 
there is a need for more generalizable approaches that can handle the situations that only data can be sampled following the 
implicit distribution without any other information related to probability density. Due to the rarity of safety-critical events, it is also 
prohibitively inefficient to estimate the distribution by only sampling the data.

In response to these challenges, we introduce a novel approach called implicit importance sampling (IIS). Unlike traditional 
methods, IIS is designed to generate the intelligent testing environment under implicit nominal distributions. By identifying critical 
cases and leveraging accept-reject sampling (Neumann, 1951), the probability of sampling critical cases is increased. Our method 
constructs an unnormalized proposal distribution using accept-reject sampling, along with an associated unnormalized weight. This 
approach enables the efficient evaluation of AV performance, even in the absence of a fully specified nominal distribution. Although 
this introduces some bias due to unnormalization, we prove that this bias can be restricted to a controllable range, ensuring that 
the evaluation results remain reliable. This allows for significantly accelerating testing, reducing the required number of test miles 
by several orders of magnitude. Fig.  1 provides a schematic illustration of the proposed method.

Our contributions are threefold:
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Fig. 1. Overview of implicit importance sampling framework.

• We present a method capable of generating intelligent testing environments for NDEs with implicit distributions of traffic 
behaviors.

• We prove that our method facilitates accelerated testing with controllable bias, providing a reliable range for bias that ensures 
the reliability of evaluation results.

• We conducted experiments on two distinct NDE models to demonstrate the generalizability of our approach. The results demon-
strated significant acceleration in testing while maintaining a controlled level of bias, thereby validating the effectiveness of 
IIS in diverse scenarios.

2. Preliminary work

This section provides an overview of existing methods related to NDE and NADE models, which are essential for understanding 
the subsequent development of our approach.

2.1. Naturalistic driving environment (NDE)

Our algorithm for generating NADE is based on existing NDE models for sampling. A fundamental approach for testing 
autonomous vehicles (AVs) is to construct NDE models. In the context of our work, we aim for the vehicle driving behaviors and data 
distribution within the NDE model to closely resemble real-world traffic scenarios. This enables us to perform simulation tests under 
these conditions, where the results obtained can provide a reliable representation of the AV’s performance in realistic environments.

As discussed in prior research (Feng et al., 2021c), NDE is represented by the combination of variables in a traffic scenario, 
which may include the position and velocity of vehicles and the parameters of road or weather. The NDE with 𝑁 vehicles and 𝑇
time steps can be represented as 

𝐱 =
⎡

⎢

⎢

⎣

𝐱1,1 ⋯ 𝐱1,𝑇
⋱ ⋯ ⋱
𝐱𝑁,1 ⋯ 𝐱𝑁,𝑇

⎤

⎥

⎥

⎦

, 𝐱 ∈ 𝐗, (1)

where 𝐱𝑖,𝑗 represents the variables of the 𝑖th vehicle at the 𝑗th time step. This representation results in an extremely high-dimensional 
variable. To handle the complexities associated with this high dimensionality, Markov Decision Process (MDP) is used to simplify 
the distribution of 𝐱. In a dynamic traffic scenario, the state and action of the 𝑖th vehicle at the 𝑗th time step are written as 𝐬𝑖 (𝑗)
and 𝐮𝑖 (𝑗) respectively. The state and action of all vehicles at the 𝑗th time step are denoted as 

𝐬 (𝑗) = [𝐬0 (𝑗) , 𝐬1 (𝑗) ,… , 𝐬𝑁 (𝑗)],

𝐮 (𝑗) = [𝐮0 (𝑗) ,𝐮1 (𝑗) ,… ,𝐮𝑁 (𝑗)].
(2)

So a scenario can be represented as a MDP (Puterman, 1990): 
𝐬 (0) → 𝐮 (0) → 𝐬 (1) → 𝐮 (1)⋯ → 𝐮 (𝑇 − 1) → 𝐬 (𝑇 ) . (3)

The distribution 𝑃 (𝐱) can be simplified as 

𝑃 (𝐱) = 𝑃 (𝐬 (0))
𝑇
∏

𝑘=0
𝑃 (𝐮 (𝑘) |𝐬 (𝑘))  (𝐬 (𝑘 + 1) |𝐬 (𝑘) ,𝐮 (𝑘)) , (4)

where  (⋅) is the state transition distribution.
Finally, our purpose is to evaluate the performance of the AV. To achieve this goal, we measure the AV’s performance by 

calculating the accident rate. Specifically, the testing process involves simulating scenarios within the constructed NDE model, 
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generating various test scenarios, and then calculating the probability of accidents occurring involving the AV. By running these 
simulations over a large number of scenarios, we can estimate the accident rate as: 

𝑃 (𝐴) =
∑

𝐱∈𝐗
𝑃 (𝐴|𝐱)𝑃 (𝐱) ≈ 1

𝑛

𝑛
∑

𝑖=1
𝑃
(

𝐴|𝑥𝑖
)

, (5)

where 𝐴 indicates the accident between AV and BVs, and given a driving environment 𝐱𝑖, 𝑃
(

𝐴|𝐱𝑖
) is estimated by counting the 

number of accident events occurring during the test.

2.2. Naturalistic and adversarial driving environment (NADE)

To obtain more accidents and accelerate the AV testing process, NADE has been proposed in Feng et al. (2021c). The main idea 
is to increase the probability to sample 𝐱 that may lead to accidents. A proposal distribution 𝑞 (𝐱) is used to replace 𝑃 (𝐱) to achieve 
this goal. And the key of this section is to design the distribution 𝑞 (𝐱). The form of 𝑞 (𝐱) resembles that of 𝑃 (𝐱): 

𝑞 (𝐱) = 𝑞 (𝐬 (0))
𝑇
∏

𝑘=0
𝑞 (𝐮 (𝑘) |𝐬 (𝑘))  (𝐬 (𝑘 + 1) |𝐬 (𝑘) ,𝐮 (𝑘)) , (6)

where 𝑞 (𝐬 (0)) = 𝑃 (𝐬 (0)).
To increase the likelihood of encountering accidents, we aim to sample 𝐱 with a higher probability 𝑝 (𝐱) when the conditional 

probability of an accident 𝑃 (𝐴|𝐱) is high, ideally close to 1. Accordingly, we aim to ensure that when 𝑃 (𝐴|𝐮, 𝐬) is higher, the 
corresponding action 𝐮 can be sampled with a higher probability, namely higher 𝑞 (𝐮|𝐬).

So the first step in obtaining 𝑞 (𝐱) is to calculate the criticality given state 𝐬. The criticality (Feng et al., 2021a,b) is calculated as
𝐶 (𝐬) =

∑

𝐮
𝑃 (𝐴|𝐮, 𝐬)𝑃 (𝐮|𝐬) . (7)

Then adjust distribution 𝑃 (𝐮|𝐬) to obtain an expected 𝑞 (𝐮|𝐬). Because 𝑃 (𝐮|𝐬) is an explicit distribution whose probability can be 
obtained, 𝑞 (𝐮|𝐬) can be designed by changing the value of probability directly according to the criticality 𝐶 (𝐬).

2.3. AV performance evaluation in NADE

Accident rate is used to evaluate the performance of AV. The most direct method is testing an AV in NDE and estimating 𝑃 (𝐴)
by the Crude Monte Carlo (CMC) method (Mooney, 1997): 

𝑃 (𝐴) = E𝑃 (𝑃 (𝐴|𝐱))

≈ 1
𝑛

𝑛
∑

𝑖=1
𝑃
(

𝐴|𝐱𝑖
)

≈ 𝑚
𝑛
, 𝐱𝑖 ∼ 𝑃 (𝐱) ,

(8)

where 𝑛 is the number of tests, 𝑚 is the number of accidents, and 𝐱𝑖 ∼ 𝑃 (𝐱) means that 𝐱𝑖 is sampled from naturalistic distribution 
𝑃 (𝐱).

However, due to the extremely low accident rate in NDE, a huge number of tests are required to estimate 𝑃 (𝐴). Based on NADE, 
𝑃 (𝐴) can also be estimated more efficiently through the importance sampling method: 

𝑃 (𝐴) = E𝑃 (𝑃 (𝐴|𝐱))

= E𝑞

(

𝑃 (𝐴|𝐱) 𝑃 (𝐱)
𝑞 (𝐱)

)

≈ 1
𝑛

𝑛
∑

𝑖=1
𝑃
(

𝐴|𝐱𝑖
) 𝑃

(

𝐱𝑖
)

𝑞
(

𝐱𝑖
) , 𝐱𝑖 ∼ 𝑞

(

𝐱𝑖
)

,

(9)

where 𝐱𝑖 ∼ 𝑞
(

𝐱𝑖
) means that 𝐱𝑖 is sampled from naturalistic and adversarial distribution 𝑞 (𝐱). Here proposal distribution 𝑞 (𝐱) is 

referred to as the importance distribution. The ratio of 𝑃 (𝐱) to 𝑞 (𝐱) is called weight: 

𝑤 (𝐱) = 𝑃 (𝐱)
𝑞 (𝐱)

. (10)

𝑃 (𝐱) and 𝑞 (𝐱) have been simplified through MDP, so Eq. (9) can also be simplified as 

𝑃 (𝐴) ≈ 1
𝑛

𝑛
∑

𝑖=1
𝑃
(

𝐴|𝐱𝑖
)

𝑇𝑖
∏

𝑘=1

𝑃 (𝐮 (𝑘) |𝐬 (𝑘))
𝑞 (𝐮 (𝑘) |𝐬 (𝑘))

, 𝐱𝑖 ∼ 𝑞
(

𝐱𝑖
)

, (11)

where 𝑇𝑖 denotes the time-steps of the 𝑖th test. While increasing the probability of sampling critical events, previous work has 
demonstrated that the estimated result in Eq. (9) is unbiased. According to importance sampling technique: 

E𝑞

(

1
𝑛

𝑛
∑

𝑖=1
𝑃
(

𝐴|𝐱𝑖
) 𝑃

(

𝐱𝑖
)

𝑞
(

𝐱𝑖
)

)

= E𝑞

(

𝑃 (𝐴|𝐱) 𝑃 (𝐱)
𝑞 (𝐱)

)

= E𝑃 (𝑃 (𝐴|𝐱)) . (12)

So we can get an accurate testing result of AV performance in NADE.
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3. Methodology

3.1. Generation of testing environment

It can be seen that the preliminary method relies on an explicit distribution 𝑃 (𝐱). However, obtaining an explicit distribution 
𝑃 (𝐱) may be challenging. In such cases, 𝑃 (𝐱) becomes an implicit distribution, from which we can only obtain samples, but cannot 
directly calculate the probability. To address this limitation, we propose a method for handling implicit distributions, allowing 
for greater flexibility and adaptability in generating NADE and accelerating testing. This section will introduce the details of this 
method.

Because 𝑃 (𝐮|𝐬) is an implicit distribution whose probability cannot be calculated, we design and sample from 𝑞 (𝐮|𝐬) with the 
help of accept-reject sampling (Neumann, 1951). The distribution 𝑞 (𝐮|𝐬) is designed as 

𝑞 (𝐮|𝐬) =
𝑞𝑢 (𝐮|𝐬)

∫ 𝑞𝑢 (𝐮|𝐬)d𝐮
,

𝑞𝑢 (𝐮|𝐬) = 𝐾 (𝐮, 𝐬)𝑃 (𝐮|𝐬) ,

𝐾 (𝐮, 𝐬) =
⎧

⎪

⎨

⎪

⎩

𝐾0 = 1, if 𝐶 (𝐬) = 0

𝐾1 > 1, if 𝐶 (𝐬) ≠ 0 and 𝑃 (𝐴|𝐮, 𝐬) > 0

𝐾2 < 1, if 𝐶 (𝐬) ≠ 0 and 𝑃 (𝐴|𝐮, 𝐬) = 0

,

(13)

where 𝑞𝑢 (𝐮|𝐬) represents the unnormalized distribution because ∫ 𝐾 (𝐮, 𝐬)𝑃 (𝐮|𝐬)d𝐮 cannot be ensured to equal to 1. 𝐶(𝐬) denotes the 
criticality of state 𝐬 and 𝐶(𝐬) ≠ 0 means there is a possibility of an accident.

To sample from 𝑞𝑢 (𝐮|𝐬) while 𝐶 (𝐬) ≠ 0, accept-reject sampling method is used to just continually sample 𝐮 ∼ 𝑃 (𝐮|𝐬), until a 
sample result is accepted with the accept probability: 

𝑃acc (𝐮|𝐬) =
𝑞𝑢 (𝐮|𝐬)

𝐾1𝑃 (𝐮|𝐬)
=

𝐾 (𝐮|𝐬)
𝐾1

=

⎧

⎪

⎨

⎪

⎩

1, if 𝐶 (𝐬) ≠ 0 and 𝑃 (𝐴|𝐮, 𝐬) > 0
𝐾2
𝐾1

, if 𝐶 (𝐬) ≠ 0 and 𝑃 (𝐴|𝐮, 𝐬) = 0

(14)

This can ensure that the sample results obey distribution 𝑞𝑢 (𝐮|𝐬).
To calculate criticality 𝐶(𝐬) and 𝑃 (𝐴|𝐮, 𝐬), we conduct trajectory prediction utilizing the outputs of NDE models in this paper. 

Based on the predicted trajectories, we assess whether an accident involving AV is likely to occur in the future. If such an accident 
is predicted, the corresponding state and action are then classified as critical, namely 𝐶(𝐬) ≠ 0 and 𝑃 (𝐴|𝐮, 𝐬) ≠ 0. It is sufficient to 
determine whether these values are non-zero, without needing the exact values. The detailed design of the trajectory prediction and 
the calculation of these criticality values will be presented in the experimental section.

Fig.  2 illustrates how to adjust 𝑃 (𝐮|𝐬) to obtain expected 𝑞𝑢 (𝐮|𝐬). The red and blue curves in the figure illustrate the distributions 
𝑃 (𝐮|𝐬) and 𝑞 (𝐮|𝐬), respectively. To ensure the driving environment is both adversarial and naturalistic, only if criticality 𝐶 (𝐬) is not 
zero will the action 𝐮 be sampled in 𝑞 (𝐮|𝐬), else in 𝑃 (𝐮|𝐬). So, as shown in Fig.  2(a), 𝑞𝑢 (𝐮|𝐬) is equal to 𝑃 (𝐮|𝐬) at uncritical state. 
On the other hand, while 𝐶 (𝐬) ≠ 0, 𝐾1 > 1 will act on the part of 𝑃 (𝐴|𝐮, 𝐬) > 0, just as shown in Fig.  2(b). So the probability of 𝐮
that satisfy 𝑃 (𝐴|𝐮, 𝐬) > 0 can be increased, meaning that the probability of event 𝐴 can be increased.

Meanwhile, 𝐾1 also causes the integral area of the probability density function to not be equal to 1. So 𝐾2 < 1 are used for 
balancing. However, the value of ∫ 𝐾 (𝐮, 𝐬)𝑃 (𝐮|𝐬)d𝐮 varies for different states 𝐬. Coupled with the implicit feature of 𝑃 (𝐮|𝐬), it can 
be challenging to choose appropriate values for 𝐾1 and 𝐾2. Therefore, while sampling 𝐮, the unnormalized distribution 𝑞𝑢 (𝐮|𝐬) is 
used to replace 𝑞 (𝐮|𝐬), as shown in Eq. (14). Unnormalization affects only the accident rate statistics, not the sampling results, which 
will be discussed in the next section.

3.2. AV performance evaluation

Importance sampling relies on explicit distributions to calculate weights. But in this paper we can only get an unnormalized 
weight 𝑤𝑢 (𝐱). The unnormalized weight at the 𝑖th test is calculated as: 

𝑤𝑢
(

𝐱𝑖
)

=
𝑃
(

𝐱𝑖
)

𝑞𝑢
(

𝐱𝑖
) =

𝑇𝑖
∏

𝑘=1

𝑃 (𝐮 (𝑘) |𝐬 (𝑘))
𝑞𝑢 (𝐮 (𝑘) |𝐬 (𝑘))

=
𝑇𝑖
∏

𝑘=1
𝑤𝑢,𝑖𝑘,

𝑤𝑢,𝑖𝑘 =
𝑃 (𝐮 (𝑘) |𝐬 (𝑘))
𝑞𝑢 (𝐮 (𝑘) |𝐬 (𝑘))

= 1
𝐾 (𝐮 (𝑘) , 𝐬 (𝑘))

,

(15)

where 𝑇𝑖 denotes the time-steps of the 𝑖th test and 𝑤𝑖𝑘 represents the weight at 𝑘th time step during 𝑖th test.
At an uncritical state 𝐬 whose criticality 𝐶 (𝐬) is 0, we have 𝑃 (𝐮|𝐬) = 𝑞 (𝐮|𝐬) and so that its weight is 1. So only critical states need 

to be considered when calculating weight. 𝑇  denotes the set of critical time steps during 𝑖th test, then
𝑖,𝐶

5 
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Fig. 2. A illustration of how to design proposal distribution. 

𝑤𝑢
(

𝐱𝑖
)

=
∏

𝑘∈𝑇𝑖,𝐶

𝑤𝑢,𝑖𝑘. (16)

Therefore, we can get an estimation of 𝑃 (𝐴): 

𝜇𝑞𝑢 = E𝑞
(

𝑃 (𝐴|𝐱)𝑤𝑢
(

𝐱𝐢
))

. (17)

We use 𝜇̂𝑞𝑢  to represent importance sampling estimation of 𝜇𝑞𝑢 : 

𝜇̂𝑞𝑢 =
1
𝑛

𝑛
∑

𝑖=1
𝑃
(

𝐴|𝐱𝑖
)

𝑤𝑢
(

𝐱𝐢
)

, 𝐱𝐢 ∼ 𝑞 (𝐱) . (18)

While sampling efficiency can be ensured to be higher than NDE, it cannot be ensured that 𝜇̂𝑞𝑢  is an unbiased estimation of 𝑃 (𝐴)
because 𝜇𝑞𝑢  is obviously not equal to 𝑃 (𝐴) in Eq. (9). But we have found that given suitable parameters 𝐾1 and 𝐾2, we can obtain 
evaluation results almost identical to Eq. (9) efficiently. The next part will elaborate on this and analyze the bias and variance of 𝜇𝑞𝑢 .

3.3. Theoretical analysis of bias

In this section, we discuss the bias between the estimation 𝜇𝑞𝑢  and 𝑃 (𝐴) and how to choose suitable parameters 𝐾1, 𝐾2 to decrease 
the bias. The source of bias between 𝑃 (𝐴) and 𝜇𝑞𝑢  is the difference between 𝑞𝑢 (𝐱) and 𝑞 (𝐱). We define the coefficient 𝑐 (𝐱) as the 
ratio of 𝑞𝑢 (𝐱) to 𝑞 (𝐱): 

𝑐 (𝐱) =
𝑞𝑢 (𝐱)
𝑞 (𝐱)

. (19)

Then we present the following theorems. 

Theorem 1. 

E𝑞

(

𝜇̂𝑞𝑢
)

= E𝑃

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

)

. (20)

Proof. 

E𝑞

(

𝜇̂𝑞𝑢
)

= E𝑞

(

1
𝑛

𝑛
∑

𝑖=1
𝑃
(

𝐴|𝐱𝐢
)

𝑤𝑢
(

𝐱𝐢
)

)

= E𝑞
(

𝑃 (𝐴|𝐱)𝑤𝑢 (𝐱)
)

= E𝑞

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑃 (𝐱)
𝑞 (𝐱)

)

= E𝑃

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

)

.

(21)

End of proof. □

Remark 1. Theorem  1 demonstrates that 𝜇̂𝑞𝑢  provides an unbiased estimation of E
(

𝑃 (𝐴|𝐱)
𝑐(𝐱)

)

 rather than 𝑃 (𝐴). This indicates that 
while 𝜇̂𝑞𝑢  may not exactly estimate 𝑃 (𝐴), it estimates a quantity scaled by the ratio of 𝑞𝑢 (𝐱) to 𝑞 (𝐱). The bias here arises from the 
mismatch between the proposal distribution 𝑞𝑢 (𝐱) and the true distribution 𝑞 (𝐱). Ideally, to minimize this bias, 𝑐 (𝐱) should be as 
close to 1 as possible, ensuring that 𝜇̂  provides a better approximation of 𝑃 𝐴 .
𝑞𝑢 ( )

6 
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Theorem 2. The bound of 𝑃 (𝐴) can be calculated as 

E𝑃

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐min (𝐱)
)

≤ 𝑃 (𝐴) ≤ E𝑃

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐max (𝐱)
)

, (22)

where 𝑐min (𝐱) and 𝑐max (𝐱) denotes the bound of 𝑐 (𝐱) during test 𝐱. 

Proof. 

E𝑃

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐min (𝐱)
)

≤ 𝑃 (𝐴) = E𝑃

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐 (𝐱)
)

≤ E𝑃

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐max (𝐱)
)

. (23)

End of proof. □

Remark 2. Theorem  2 establishes bounds on 𝑃 (𝐴) based on the minimum and maximum values of the coefficient 𝑐 (𝐱). This theorem 
provides a range within which the true value of 𝑃 (𝐴) lies. The bounds are calculated by incorporating 𝑐min (𝐱) and 𝑐max (𝐱), which 
represent the extremal values of 𝑐 (𝐱). By estimating these bounds through sampling results, we can obtain a reliable range for 𝑃 (𝐴).

In the following content, we will detail the methods used to calculate the bound of 𝑃 (𝐴) as outlined in Theorem  2, including 
how to estimate the bound of 𝑐 (𝐱). Further, we will describe the process for selecting the parameters 𝐾1 and 𝐾2 to control the bias 
in the estimation. This involves ensuring that 𝑐 (𝐱) remains close to 1, as discussed in Theorem  1, to ensure that the bound of 𝑃 (𝐴)
is both accurate and reliable for evaluating the performance of AV.

We estimate the bound of 𝑃 (𝐴) using sampling results based on 𝑞 (𝐱): 

E𝑃

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐min (𝐱)
)

= E𝑞

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑃 (𝐱)
𝑞 (𝐱)

𝑐min (𝐱)
)

= E𝑞
(

𝑃 (𝐴|𝐱)𝑤𝑢 (𝐱) 𝑐min (𝐱)
)

≈ 1
𝑛

𝑛
∑

𝑖=1
𝑃
(

𝐴|𝐱𝐢
)

𝑤𝑢
(

𝐱𝐢
)

𝑐min
(

𝐱𝐢
)

, 𝐱𝐢 ∼ 𝑞 (𝐱) ,

E𝑃

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐max (𝐱)
)

≈ 1
𝑛

𝑛
∑

𝑖=1
𝑃
(

𝐴|𝐱𝐢
)

𝑤𝑢
(

𝐱𝐢
)

𝑐max
(

𝐱𝐢
)

, 𝐱𝐢 ∼ 𝑞 (𝐱) .

(24)

And we record these estimations as 

𝜇̂𝑞𝑢 ,min
def
= 1

𝑛

𝑛
∑

𝑖=1
𝑃
(

𝐴|𝐱𝐢
)

𝑤𝑢
(

𝐱𝐢
)

𝑐min
(

𝐱𝐢
)

,

𝜇̂𝑞𝑢 ,max
def
= 1

𝑛

𝑛
∑

𝑖=1
𝑃
(

𝐴|𝐱𝐢
)

𝑤𝑢
(

𝐱𝐢
)

𝑐max
(

𝐱𝐢
)

.

(25)

Introduce confidence level 𝜆 and standard deviation function std (⋅), then the bound of 𝑃 (𝐴) can be estimated as 

𝑃 (𝐴) ≥ E𝑃

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐min (𝐱)
)

≥ 𝜇̂𝑞𝑢 ,min − 𝜆 ⋅ std
(

𝜇̂𝑞𝑢 ,min

)

,

𝑃 (𝐴) ≤ E𝑃

(

𝑃 (𝐴|𝐱)
𝑐 (𝐱)

𝑐max (𝐱)
)

≤ 𝜇̂𝑞𝑢 ,max − 𝜆 ⋅ std
(

𝜇̂𝑞𝑢 ,max

)

.

(26)

For each test 𝐱𝑖, 𝑃
(

𝐴|𝐱𝑖
)

𝑤𝑢
(

𝐱𝑖
) can be calculated based on the sample results. The key is to estimate the bound of 𝑐 (𝐱𝐢

)

. For 
test 𝐱𝑖, using 𝑐𝑖𝑘 to represent the normalization coefficient of 𝑞𝑢

(

𝐮𝑘|𝐬𝑘
) at the 𝑘th time step: 

𝑐𝑖𝑘 = ∫ 𝑞𝑢
(

𝐮𝑘|𝐬𝑘
)

d𝐮𝑘. (27)

It is straightforward to see that 𝑞 (𝐮𝑘|𝐬𝑘
)

= 𝑞𝑢
(

𝐮𝑘|𝐬𝑘
)

𝑐𝑖𝑘
. At time steps that are not critical, i.e., 𝑘 ∉ 𝑇𝑖,𝐶 , we have 𝑃

(

𝐮𝑘|𝐬𝑘
)

=
𝑞
(

𝐮𝑘|𝐬𝑘
)

= 𝑞𝑢
(

𝐮𝑘|𝐬𝑘
) and therefore 𝑐𝑖𝑘 = 1. So for the entire sequence, 𝑐 (𝐱𝑖

) is given by the product ∏𝑘∈𝑇𝑖,𝐶 𝑐𝑖𝑘. Further, we 
calculate 𝑐𝑖𝑘 as 

𝑐𝑖𝑘 = 𝐾1 ⋅𝐻1 (𝐬 (𝑘)) +𝐾2 ⋅𝐻2 (𝐬 (𝑘))
=
(

𝐾1 − 1
)

⋅𝐻1 (𝐬 (𝑘)) +𝐾2,
(28)

where 
𝐻1 (𝐬 (𝑘)) = ∫𝐔𝐶

𝑃 (𝐮|𝐬 (𝑘))d𝐮,

𝐻2 (𝐬 (𝑘)) = 1 −𝐻1 (𝐬 (𝑘)) .
(29)

𝐔𝑐 denotes the set of critical actions.
It is evident that 𝐻1 and 𝐻2 cannot be directly obtained, as the probability distribution 𝑃 (𝐮|𝐬(𝑘)) is an implicit distribution, 

making precise integration calculations difficult. Therefore, we relax the conditions and proceed with the maximum and minimum 
values of 𝐻  for subsequent computations. Under the assumption that the maximum and minimum values of 𝐻  are known, we 
1 1
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continue with the analysis. And the determination of the maximum and minimum values of 𝐻1 will be discussed later. Due to 𝑐𝑖𝑘
being linear respect to 𝐻1, the minimum and maximum values of 𝑐𝑖𝑘 are respectively 

min 𝑐𝑖𝑘 =
(

𝐾1 − 1
)

⋅min𝐻1 +𝐾2,

max 𝑐𝑖𝑘 =
(

𝐾1 − 1
)

⋅max𝐻1 +𝐾2.
(30)

Then 
𝑐
(

𝑥𝑖
)

=
∏

𝑘∈𝑇𝑖,𝐶

𝑐𝑖𝑘 ≥
∏

𝑘∈𝑇𝑖,𝐶

min 𝑐𝑖𝑘 =
(

min 𝑐𝑖𝑘
)𝑇𝑖,𝐶 ,

𝑐
(

𝑥𝑖
)

=
∏

𝑘∈𝑇𝑖,𝐶

𝑐𝑖𝑘 ≤
∏

𝑘∈𝑇𝑖,𝐶

max 𝑐𝑖𝑘 =
(

max 𝑐𝑖𝑘
)𝑇𝑖,𝐶 ,

(31)

where superscript 𝑇𝑖,𝐶 denote the size of set 𝑇𝑖,𝐶 . Define 

𝑐min
(

𝐱𝑖
) def
=

(

min 𝑐𝑖𝑘
)𝑇𝑖,𝐶 ,

𝑐max
(

𝐱𝑖
) def
=

(

max 𝑐𝑖𝑘
)𝑇𝑖,𝐶 .

(32)

Then the bound of 𝑃 (𝐴) in Eq. (26) can be calculated.
Eqs. (26),(30) and (32) provide practical methods for calculating the bound of 𝑃 (𝐴). And according to these three equations, 

we also find that the key to control the bound of 𝑃 (𝐴) is to choose suitable 𝐾1, 𝐾2 to make min 𝑐𝑖𝑘 and max 𝑐𝑖𝑘 close to 1. Given 
the range of 𝐻1, we need to choose 𝐾1, 𝐾2 by minimize (min 𝑐𝑖𝑘 − 1) and minimize (max 𝑐𝑖𝑘 − 1). However, these two optimization 
objectives are inherently conflicting: as one of values of min 𝑐𝑖𝑘 and max 𝑐𝑖𝑘 approaches 1, the other would deviate from 1. Therefore, 
a balance needs to be considered by carefully selecting the 𝐾1 and 𝐾2. In the experimental section, we will provide an explanation 
and clarification of the parameters used in this paper.

Up to this point, we have presented the methodology of this paper. However, the process of obtaining the minimum and maximum 
values of 𝐻1 was not fully explained. To address this, we now provide a detailed description of how these values are derived. 
Specifically, we perform simulations based on NDE prior to the accelerated testing, and identify the critical states where 𝐶(𝐬) > 0
in the simulations. Once a critical state is identified, we sample extensively from NDE to obtain actions 𝐮 given the state, and thus 
approximate the empirical distribution of 𝑃 (𝐮|𝐬) when 𝐶(𝐬) > 0. Then, based on the estimated criticality value, we identify the 
critical actions that 𝑃 (𝐴|𝐮, 𝐬) is no-zero. Finally, using these critical actions and their probabilities, we approximate the value of 𝐻1

𝐻1 (𝐬 (𝑘)) = ∫𝐔𝐶

𝑃 (𝐮|𝐬 (𝑘))d𝐮 ≈
∑

𝐮∈𝐮𝑐
𝑃 (𝐮|𝐬 (𝑘)) , (33)

and then obtain the approximation of the minimum and maximum values of 𝐻1. The process of calculating 𝐻1 is independent of 
the testing process and does not occur concurrently with the testing. Therefore, it does not affect the testing efficiency.

To enhance the process of bias analysis, a flowchart is provided to visually represent the key variables and the computational 
formulas used in our method, as shown in Fig.  3.

4. Experimental studies

To validate our method, we adapted our implicit importance sampling approach to two different NDE models based on existing 
works (Feng et al., 2023; Yan et al., 2023). We refer to these environments as NDE-I and NDE-II in this paper. Since the NDEs were 
generated based on naturalistic driving data, the evaluation results are representative of real-world scenarios. And the adaptability 
and generalizability of our approach were verified, as different types of NDE models and varied road geometries were utilized in 
these experiments.

The testing method involved conducting extensive simulations on the NDEs, gathering test scenarios, and calculating the 
proportion of scenarios where the AV encountered accidents. Additionally, naturalistic and adversarial scenarios were generated 
using our proposed method, and the probability of accidents occurring for the AV was weighted and estimated. We compared the 
accident rate results and testing efficiency from both methods, validating the effectiveness of our method.

NDE-I is modeled with a discrete distribution 𝑃 (𝐮|𝐬) and we assume that the distribution is unknown by the accelerated testing 
approach. Specifically, data analysis is conducted using a naturalistic driving dataset, where both vehicle state values and action 
values are discretized into state–action pair. Then the empirical probability of state–action pair can be obtained from naturalistic 
driving dataset using statistical methods. 𝑃 (𝐮|𝐬) at time step 𝑘 is modeled as 

𝑃 (𝐮 (𝑘) |𝐬 (𝑘)) =
𝑁
∏

𝑖=1
𝑃
(

𝐮𝑖 (𝑘) |𝐬 (𝑘)
)

, (34)

where 𝑁 is the number of vehicles. The 𝑃 (

𝐮𝑖 (𝑘) |𝐬 (𝑘)
) is further simplified by assuming spatial independence: 

𝑃 (𝐮 (𝑘) |𝐬 (𝑘)) =
𝑁
∏

𝑖=1
𝑃
(

𝐮𝑖 (𝑘) |𝐬𝑁𝑖
(𝑘)

)

, (35)

where 𝑁𝑖 denotes the vehicles that have dependencies with 𝑖th vehicle. Finally, 𝑃
(

𝐮𝑖 (𝑘) |𝐬𝑁𝑖
(𝑘)

)

 is calculated by the empirical 
probability of state–action pair.
8 
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Fig. 3. Computational Flowchart for bias analysis.

According to explicit and discrete distributions, the true value of the distribution 𝑞 (𝐮|𝐬) can be easily obtained through 
normalization, allowing us to calculate the true weight values. We compared the experimental results using both the true weights 
and the unnormalized estimated weights from IIS in NDE to demonstrate the validity of our method. All experiments on NDE-I 
were conducted on a two-lane highway with a 400-meter driving distance for the AV. The tested AV was constructed based on the 
Intelligent Driver Model (IDM) (Treiber et al., 2000) for longitudinal control and the Minimizing Overall Braking Induced by Lane 
Changes (MOBIL) model (Kesting et al., 2007) for lane-changing behavior. Each test episode concluded either when the AV reached 
the 400-meter mark or an accident occurred. The road network and representative scenarios of the NDE are illustrated in Fig.  4(a). 
In the figure, the red vehicle represents the tested AV, while the yellow vehicles represent the background vehicles.

On the other hand, NDE-II model is constructed using a neural network, which is trained on naturalistic driving data. The 
model consists of a backbone network built on the transformer architecture, along with a safety-layer that combines the transformer 
network with complex rules to adjust the output of the backbone. Specifically, backbone network 𝐹𝑀  takes the current scenario state 
as input and outputs the predicted trajectory for the next 5 steps, with a time step of 0.4 s. A Conflict Critic Module 𝐹𝐶 evaluates 
the predicted trajectory to determine if an accident occurs at the next time step. If no accident occurs, the trajectory is accepted. 
If an accident occurs, an acceptance probability is used to decide whether to accept the trajectory. This acceptance probability is 
based on naturalistic driving dataset and ensures consistency with the accident rate in the real data. This intricate network structure 
makes it difficult to calculate the probability density values.

As the exact distribution value is not accessible, only the sample results can be obtained, making implicit importance sampling 
the sole applicable approach. We compared the experimental results using unnormalized estimated weights from IIS with results in 
NDE to confirm that our method is effective for problems involving implicit distributions. We conducted experiments in a roundabout 
environment, where the AV was controlled using vehicle trajectories directly generated from the NDE. Each test episode lasted for 
36 s, concluded when an accident occurred, or when the AV exited the roundabout. The corresponding road network and scenario 
illustration are shown in Fig.  4(b), representing the Ann Arbor roundabout.

For performance metrics, we assessed both adversarialism and naturalism by comparing crash rates and key data distributions 
between IIS and NDE. In the case of NDE-I, only risky data, which constitutes a small proportion, was collected and analyzed to 
demonstrate that IIS generates more adversarial driving environments. For NDE-II, all driving data was collected and analyzed to 
prove that, despite the small amount of risk data, the generated NADE closely resembles the original NDE. Also, we compared 
accident rates to verify the results of accelerated testing, showing that our method can estimate accident rates more efficiently with 
controllable and acceptable biases.

In summary, our experiments validated three key aspects of our method:

• IIS is capable of generating NADE that increase adversarial scenarios while preserving the naturalistic properties of the original 
driving environment.

• IIS achieves accelerated testing by efficiently estimating accident rates, particularly in cases where the nominal distribution 
𝑃 (𝐱) is implicit.

• Our method allows for controlled bias during estimation, and with appropriate parameter selection, we demonstrate that the 
bias can be kept within a reliable range. Additionally, we provide guidelines for choosing parameters to ensure reliable results.

4.1. Results analysis for NDE-I

Before discussing the results, we first introduce the criticality measure 𝐶 (𝐬) for NDE-I. We utilized a tree-search method for 
simple trajectory prediction. Specifically, a one-second tree search is performed for both the AV and the surrounding BVs at the 
current moment to evaluate whether BVs’ actions could result in a traffic accident involving the AV. If an action is determined to 
potentially cause an accident, the corresponding BVs’ action at the current moment is considered risky, with 𝑃 (𝐴|𝐮, 𝐬) ≠ 0; otherwise, 
𝑃 𝐴|𝐮, 𝐬 = 0.
( )
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Fig. 4. Overview of traffic scenarios in two NDEs from a bird’s-eye perspective.

As for parameters 𝐾1 and 𝐾2, we set 𝐾1 = 100, 𝐾2 = 0.99 and 𝐾1 = 500, 𝐾2 = 0.99 respectively, to ensure that 𝑐𝑖𝑘 approaches 1. 
And the range of 𝐻1 was determined to be 

(

1 × 10−7, 5 × 10−5
)

. The corresponding values of (min 𝑐𝑖𝑘,max 𝑐𝑖𝑘
) being approximately 

(0.9900099, 0.99495) for 𝐾1 = 100 and (0.9900499, 1.01495) for 𝐾1 = 500, according to Eq. (30). Given that 𝑐𝑖𝑘 remains close to 1, we 
can ensure that the bias is kept within a controllable range.

Although both 𝐾1 and 𝐾2 are involved, 𝐾2 is consistently set to 0.99, so the analysis in the paper focuses primarily on the 
variations in 𝐾1. For validation, we conducted approximately 5 × 106 test episodes for the parameter setting 𝐾1 = 100, and 6 × 105

test episodes for the setting 𝐾1 = 500, in the naturalistic and adversarial driving environments, while the corresponding number of 
episodes in NDE was approximately 2 × 108. Fig.  5 visualizes the key data distributions with 𝐾1 = 500, 𝐾2 = 0.99, comparing NDE 
with the NADE generated by IIS.

The first column of figures shows the distribution of crash types and near-miss incidents involving AV. We use time-to-collision 
(TTC) and bumper-to-bumper distance to assess proximity between AV and background vehicles (BVs). It is evident that the crash 
rate in NADE reached 2.45 × 10−05, significantly higher than the NDE’s crash rate of 1.58 × 10−7. This result demonstrates that 
the environment generated by IIS is more adversarial. Additionally, the near-miss distances and TTC values in the IIS-generated 
environment tend to cluster at lower values, further explaining the increased frequency of accidents. Traffic flow distributions were 
altered, as the sample distribution 𝑞 (𝐱) replaced the nominal distribution 𝑃 (𝐱).

One advantage of importance sampling is its ability to provide unbiased estimates by applying weights to the samples. By applying 
the true weight 𝑤 (𝐱), we modified the distributions as shown in the second column of figures, bringing them closer to the original 
NDE distribution. This indicates that importance sampling maintains unbiasedness within a certain level of accuracy. However, in 
our work, 𝑃 (𝐱) is treated as an implicit distribution, and only approximate, unnormalized weights can be calculated. As a result, the 
estimated outcomes inherently carry bias. Despite this, our experiments show that the bias remains small under the given parameters, 
as demonstrated in the final column of figures.

We also evaluated the crash rate estimation using IIS. A confidence level of 𝜆 = 0.95 was chosen for calculating bounds and 
confidence intervals. Fig.  6 presents the evaluation results under two parameter settings. Fig.  6(a) and Fig.  6(d) depict the crash 
rate progression over time, with the shaded areas representing confidence intervals. Fig.  6(b) and Fig.  6(e) display the relative 
half-width (RHW) metric (Zhao et al., 2017), which is used to measure efficiency. The minimum number of test episodes required 
to reach a precision threshold (RHW=0.3) was computed. For NDE, approximately 2.03×108 episodes were required. With 𝐾1 = 100, 
the number of tests required in the environment generated by IIS was reduced to 2.34 × 106, accelerating the evaluation by a factor 
of 87. And the experimental results showed that the estimated crash rate converges to the very similar value. When 𝐾1 = 500, only 
4.32 × 105 tests were needed, accelerating the evaluation by a factor of 470. However, this higher efficiency came at the cost of 
increased yet still controlled bias in the crash rate estimate.

The results above demonstrate that our method significantly accelerates the evaluation process while providing a reliable 
estimation of the crash rate, even with some degree of bias. Then we further analyze the efficiency, the range of bias, and the 
relationship between these outcomes and the parameter 𝐾1. We computed the bounds for the estimated crash rate and displayed 
them in Fig.  7, where the shaded area represents the bounds of 𝑃 (𝐴) calculated using Eq. (26). While a larger 𝐾1 increases the 
probability of encountering riskier scenarios, it also results in a looser bound on min 𝑐𝑖𝑘, which eventually lead to large bound of 
𝑐(𝐱) and result 𝑃 (𝐴). Thus, 𝐾1 = 500 achieved greater efficiency but with a slightly larger bias. The optimal value of 𝐾1 should be 
selected based on the trade-offs between efficiency and accuracy.

4.2. Results analysis for NDE-II

NDE-II is based on a complex neural network, which can predict the vehicle states for the next five time steps. We calculate 
𝑃 (𝐴|𝐮, 𝐬) based on the trajectory prediction results. If a predicted trajectory indicates a collision with the AV, we consider that the 
model output at the current state and action satisfies 𝑃 (𝐴|𝐮, 𝐬) > 0. Multiple samples are generated at the same state, and if any 
predicted trajectory results in a collision, the current state is considered risky, namely 𝐶 𝐱 > 0.
( )
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Fig. 5. Naturalistic and adversarial driving environment generation for NDE-I.

We set the parameters as 𝐾1 = 50, 𝐾2 = 0.99 and 𝐾1 = 100, 𝐾2 = 0.99, respectively. And the range of 𝐻1 was determined 
to be (4.5 × 10−5, 5 × 10−3

)

. The corresponding values of (min 𝑐𝑖𝑘,max 𝑐𝑖𝑘
) are approximately (0.992205, 1.137) for 𝐾1 = 50 and 

(0.994455, 1.287) for 𝐾1 = 100. Given that 𝑐𝑖𝑘 remains close to 1, we can ensure that the bias is kept within a controllable range.
For validation, we collected approximately 4 × 105 test episodes under both parameter settings in NADE, while about 1.3 × 107

episodes were tested in NDE. In Fig.  8, we visualized the distribution of key data with 𝐾1 = 50, 𝐾2 = 0.99.
The crash rate in NADE reached 3.49×10−4, significantly higher than in NDE (7.51×10−6), demonstrating the adversarial nature of 

the generated environment. After applying the weighting adjustments, the crash rate in NADE was modified to 6.98×10−6, as shown 
in Fig.  8(b). This modification results in a slight bias due to the use of unnormalized weights, but it remains within a reasonable 
range for practical purposes. Fig.  8(c), Fig.  8(b), and Fig.  8(e) show the distribution of distance between vehicles and vehicle speeds, 
respectively. The KL-divergence values of the distributions were 0.002, 0.004, and 0.003, respectively, indicating that the generated 
NADE closely resembles NDE. This is reasonable because only the behavior of critical vehicles at specific moments, representing an 
extremely small proportion of the data, was altered, while the overall driving environment remained consistent with naturalistic 
conditions.

Similar to the analysis in Section 4.1, we estimated the accident rates and plotted the results in Fig.  9. In NDE, approximately 
4.26 × 106 tests were required to reach the desired precision. With 𝐾1 = 50, our method required only 8.61 × 104 tests, accelerating 
the evaluation by a factor of 49. For 𝐾1 = 100, only 5.10 × 104 tests were required, resulting in a speed-up of 83 times.

Although a larger 𝐾1 leads to higher evaluation efficiency, it also introduces a slight bias in the results. We further calculated the 
bounds of the estimated crash rates, which are visualized in Fig.  10, showing the trade-off between efficiency and accuracy when 
choosing different values of 𝐾 .
1
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Fig. 6. AV performance evaluation for NDE-I.

Fig. 7. Bias analysis of AV performance evaluation results for NDE-I.

5. Conclusion and future work

In this paper, we introduce a novel Implicit Importance Sampling (IIS) approach designed to enhance the intelligent testing 
environment for autonomous vehicles (AVs). Our method generates testing environments that are more adversarial, which allows 
for accelerated testing and provides reliable and representative evaluation results. We validated our approach through experiments 
on two different NDE models, demonstrating its scalability and effectiveness. Our method is effective for any NDE model that testing 
scenarios can be sampled, even if the NDE model is implicit or not well-defined. This versatility highlights the potential of IIS to 
address common challenges in testing not only autonomous vehicles but also other intelligent agents in complex environments.

Future work will focus on improving the proposal distribution design, including reducing bias by enhancing the parameter 
selection process. We plan to explore the integration of neural networks for the proposal distribution design in future studies. 
Specifically, we aim to investigate the use of neural networks to output parameters 𝐾1 and 𝐾2, and optimize the current proposal 
distribution. This enhancement will make our method more robust and accurate, leading to more reliable testing outcomes for 
autonomous vehicles and other intelligent systems.
12 
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Fig. 8. Naturalistic and adversarial driving environment generation for NDE-II.

Fig. 9. AV performance evaluation for NDE-II.
13 



K. Ren et al. Transportation Research Part C 174 (2025) 105106 
Fig. 10. Bias analysis of AV performance evaluation results for NDE-II.
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