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Abstract—Testing and evaluation is a critical step in the devel-
opment and deployment of connected and automated vehicles
(CAVs). Due to the black-box property and various types of
CAVs, how to test and evaluate CAVs adaptively remains a major
challenge. Many approaches have been proposed to adaptively
generate testing scenarios during the testing process. However,
most existing approaches cannot be applied to complex scenarios,
where the variables needed to define such scenarios are high
dimensional. Towards filling this gap, the adaptive testing with
sparse control variates method is proposed in this paper. Instead
of adaptively generating testing scenarios, our approach evaluates
CAVs’ performances by adaptively utilizing the testing results.
Specifically, each testing result is adjusted using multiple linear
regression techniques based on control variates. As the regression
coefficients can be adaptively optimized for the CAV under test,
using the adjusted results can reduce the estimation variance,
compared with using the testing results directly. To overcome
the high dimensionality challenge, sparse control variates are
utilized only for the critical variables of testing scenarios. To
validate the proposed method, the high-dimensional overtaking
scenarios are investigated, and the results demonstrate that our
approach can further accelerate the evaluation process by about
30 times.

Index Terms—Adaptive testing, connected and automated ve-
hicles, sparse control variates, overtaking scenarios

I. INTRODUCTION

Testing and evaluation are major challenges for the devel-
opment and deployment of connected and automated vehicles
(CAVs). The past few years have witnessed increasingly rapid
advances in the field of testing scenario library generation
(TSLG) [1]–[12]. The goal of TSLG is usually to purposely
generate safety-critical testing scenarios that can improve the
evaluation efficiency of CAVs while ensuring the evaluation
unbiasedness. As CAVs are usually black boxes, to evaluate
the criticality values of different testing scenarios, surrogate
models (SMs) are usually constructed by leveraging prior
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knowledge of CAVs. Due to the various types of CAVs,
however, the performance dissimilarities between SMs and the
CAVs under test usually exist, which may compromise the ef-
fectiveness of the testing scenarios and decrease the evaluation
efficiency. Therefore, how to adaptively test different types of
CAVs becomes a critical problem.

Towards addressing this problem, several adaptive testing
methods have been proposed [13]–[16]. The basic idea of these
existing methods is to adaptively adjust the testing scenarios
by leveraging the testing results of CAVs during the testing
process. With more testing results of CAVs, more posteriori
knowledge of CAVs can be obtained, and therefore the testing
scenarios can be more customized and optimized for the CAVs
under test, which can adaptively improve the testing efficiency
[16]. However, most existing adaptive testing methods have
limitations in dealing with complex scenarios, because of the
“Curse of Dimensionality” (CoD) problem. For example, the
CAV overtaking scenarios with two background vehicles could
have 12-dimensional states (lateral and longitudinal positions
and velocities of all three vehicles) and 3-dimensional actions
(i.e., accelerations). Although the overtaking scenarios seem
simple, if they last for 10 seconds at a frequency of 10 Hz,
the dimension of the scenarios could exceed 103, which cannot
be handled by most existing adaptive testing methods.

The goal of this paper is to develop adaptive testing methods
for high-dimensional scenarios using control variates (CVs).
Instead of adaptively generating testing scenarios, we evaluate
CAVs’ performances by adaptively utilizing the testing results.
The CVs are some random variables with means known
[17], which usually correlate the performance index of the
event of interest. Through the regression of control parameters
associated with the CVs, the testing results can be adaptively
adjusted into a much narrower interval, which can greatly
reduce the estimation variance. The worse the prior knowledge
of CAVs is, the worse the testing results are, and the more they
could be improved by the CVs. However, there also exists the
CoD problem if we directly apply traditional CVs, since the
number of control parameters would increase exponentially
with the dimension of the scenarios.

To address the CoD problem, we propose the adaptive test-
ing with sparse control variates (ATSCV) method in this paper
to apply sparse control variates (SCVs) to the testing results,
which only controls the variates associated with the critical
variables of testing scenarios. To identify the critical variables,
we applied the naturalistic and adversarial driving environment
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Fig. 1. Illustration of the overtaking scenarios.

(NADE) [18], which can generate high-dimensional testing
scenarios by adjusting the critical variables of the naturalistic
driving environment (NDE). Specifically, the critical variables
are the scenes where NADE makes adversarial adjustments to
the maneuvers of background vehicles, the dimension of which
is much smaller than that of the scenarios. By generating
control variates for the sparse critical variables, the SCVs
can address the CoD problem for the adaptive testing method.
Then, the SCVs are determined by multiple linear regression
(MLR) techniques [19], [20], which can essentially adjust
the testing results. As the MLR techniques can leverage the
posteriori knowledge of CAVs, the adjusted testing results
can better evaluate the performance of the CAVs under test,
resulting in an adaptive testing method. We note that this
method is complementary to the adaptive testing methods that
can adaptively generate testing scenarios during the testing
process. To validate the proposed ATSCV method, the overtak-
ing scenarios are investigated. Comparing with the estimation
efficiency in NADE, the new adaptive testing method can
further accelerate the evaluation process by about 30 times.

The rest of this paper is organized as follows. Section II
introduces the overtaking scenarios and presents the testing
scenario library generation methods in NDE and NADE. In
Section III, the adaptive testing with sparse control variates
method is proposed. Section IV evaluates the accuracy and
efficiency of the ATSCV method with a case study on over-
taking scenarios. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

A. Overtaking Scenarios

The overtaking scenarios are shown in Fig. 1. The key
to handle the TSLG problem is to model the overtaking
scenarios as Markov decision processes (MDPs). In overtaking
scenarios, the leading vehicle (LV) in the left lane runs at a
constant speed, whose state (including longitudinal position,
lateral position and longitudinal velocity) and action (i.e.,
acceleration) are denoted as sLV = (xLV, yLV, vLV) and aLV =
0, respectively. The background vehicle (BV) follows LV,
whose state is denoted as sBV = (xBV, yBV, vBV). Let A be
the action space (i.e., acceleration space), and A+ ≜ A∪{↱}
be the total action space, where ↱ represents right lane change.
The action of BV aBV ∈ A+. Specifically, aBV ∈ A before
BV cuts in, aBV = ↱ when BV cuts in and after that aBV = 0.
The automated vehicle (AV) in the right lane runs at a constant
speed before BV cuts in and follows BV after that, whose

state is denoted as sAV = (xAV, yAV, vAV). The action of AV
aAV = 0 before BV cuts in, and aAV ∈ A after that.

The state of an overtaking scenario is the collection of three
vehicles’ states (sLV, sBV, sAV). Since these state variables
have interdependencies, we can formulate the state as

s ≜
(
vBV, R1, Ṙ1, R2, Ṙ2

)
∈ S, (1)

where S is the set of all feasible states,

R1 = xLV − xBV, Ṙ1 = vLV − vBV,

R2 = xBV − xAV, Ṙ2 = vBV − vAV.
(2)

The action of the overtaking scenario is defined as the action
of BV, that is, a ≜ aBV ∈ A+. Then an overtaking scenario
is given by

x = (s0, a0, s1, a1, . . . , sm, am) ∈ X , (3)

where X is the set of all feasible scenarios,

sk =
(
vBV,k, R1,k, Ṙ1,k, R2,k, Ṙ2,k

)
, k = 0, 1, . . . ,m (4)

is the state and ak = aBV,k is the action of BV at kth time
step, 0 ⩽ m ⩽ M , where M is the maximum time step. When
AV rear-ends BV after BV cuts in or BV does not cut in until
AV passes BV, the overtaking scenarios terminate.

Suppose that the overtaking scenarios are simulated for 10
seconds at a frequency of 10 Hz, then the dimension of the
scenario will exceed 103, resulting in the CoD problem. We
note that the overtaking scenarios are significantly different
from the simple scenarios that are usually studied such as
car-following scenarios [10], [12] and cut-in scenarios [8],
[10], [11], where the accident events rely heavily on the
initial states. On the contrary, the accident event of overtaking
scenarios is more stochastic and complicated, because the
right lane-changing action of BV is probabilistic and BV may
have many chances of time steps to cut in, which essentially
results in different cut-in and car-following scenarios. That
is also the reason why the cut-in scenarios are usually low
dimensional, while the overtaking scenarios are much more
high dimensional. Moreover, the riskiest scenarios for the
upcoming Level 3 automated lane keeping system (ALKS)
will arguably be the overtaking scenarios [21]. Therefore, the
overtaking scenarios are selected for the case study.

B. Testing Scenario Library Generation

Let Ω = X be the sample space, including all feasible
overtaking scenarios. Consider the probability space (Ω,F ,P),
where F is a σ-algerbra of subsets of Ω and P is a probability
measure on F . Since the scenarios are discretized, we choose
F = P(Ω) to be the power set of Ω. Then an event A ⊂ Ω is
a subset of scenarios in the sample space Ω. Let X : x 7→ x,
x ∈ X be the random variable of scenarios. To verify and
validate AV, the accident event is usually the event of interest,
which is defined as A = {x ∈ X |R1,m ⩽ daccid}, where
daccid is the distance threshold for accident. The accident rate
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µ = P(A) is utilized as the performance index of AV, which
can also be represented as an expectation, i.e.,

µ = Ep[IA(X)] =
∑
x∈X

P(A|x)p(x), (5)

where IA(X) is the indicator function of the event A,

IA(X) =

{
1, if X ∈ A,

0, if X /∈ A,
(6)

and p is the naturalistic joint distribution of x. Assuming the
Markovian property, the joint distribution can be factorized as

p(x) = p(s0)

m∏
k=0

p(ak|sk). (7)

The essence of testing AV in naturalistic driving environ-
ment (NDE) is to estimate the performance index µ by Monte
Carlo simulation, i.e.,

µ̂n =
1

n

n∑
i=1

P(A|Xi), Xi ∼ p. (8)

The NDE suffers from the inefficiency problem, as the acci-
dent event is usually a rare event. To improve the efficiency of
Monte Carlo simulation, importance sampling (IS) is adopted
to test AV with scenarios generated from a different probability
distribution q, which is called the importance function and
needs to satisfy q(x) > 0 whenever P(A|x)p(x) > 0 [9]–[11].
Since

µ =
∑
x∈X

P(A|x)p(x) =
∑
x∈X

P(A|x)p(x)
q(x)

q(x)

= Eq

[
P(A|X)p(X)

q(X)

]
,

(9)

the performance index can be estimated as

µ̂q =
1

n

n∑
i=1

P(A|Xi)p(Xi)

q(Xi)
, Xi ∼ q

=
1

n

n∑
i=1

P(A|Xi)
p(s0,i)

q(s0,i)

mi∏
k=0

p(ak,i|sk,i)
q(ak,i|sk,i)

,

(10)

where Xi = (s0,i, a0,i, . . . , smi,i, ami,i), i = 1, . . . , n.

C. Naturalistic and Adversarial Driving Environment Gener-
ation

The IS method is able to overcome the inefficiency problem
with properly selected importance function and in fact, there
exists optimal importance function whose estimation variance
is zero [9]. However, the IS method faces the CoD problem if
the testing scenarios are high-dimensional. To address both the
inefficiency problem and the CoD problem, the naturalistic and
adversarial driving environment (NADE) has been proposed
to only sample critical variables with IS, while other variables
remain its naturalistic distribution [18].

Denote x = (xc, x−c), where xc = {xc1 , . . . , xcl}, l =
0, 1, . . . , L is the set of critical variables, c1, . . . , cl are called
the critical moments, L is the maximum number of control

steps among all scenarios x ∈ X and x−c is the set of other
variables. Let Xc : x 7→ xc be the random variable of critical
variables and X−c : x 7→ x−c be the random variable of
other variables. Then we have X = (Xc, X−c). The random
variable Xc controls how to identify critical variables, and thus
it’s also called the control policy. The importance function can
then be formulated as q(x) = q(xc)p(x−c), and therefore the
performance index can be estimated in NADE as

µ̃q =
1

n

n∑
i=1

P(A|Xi)p(Xc,i)

q(Xc,i)
, Xi ∼ q

=
1

n

n∑
i=1

P(A|Xi)
p(s0,i)

q(s0,i)

∏
k∈Tc,i

p(ak,i|sk,i)
q(ak,i|sk,i)

,

(11)

where Xc,i is the random variable of critical variables of Xi,
and Tc,i is the set of critical moments of the ith test.

It can be shown that with appropriate control policies and
importance functions, NADE is able to greatly address the
CoD problem and increase the evaluation efficiency [18].

III. ADAPTIVE TESTING WITH SPARSE CONTROL
VARIATES

A. Control Variates

Control variates (CVs) can be usefully combined with
the mixture importance sampling. In mixture IS, we sample
X1, . . . , Xn from the mixture importance function qα =∑J

j=1 αjqj , where αj ⩾ 0,
∑J

j=1 αj = 1 and the qj are
importance functions. A control variate is a vector

h(x) = (h1(x), . . . , hJ(x))
⊤ (12)

for which
∑

x∈X h(x) = θ, where θ is a known value.
Using the importance functions as control variates provides
at least as good a variance reduction as we get from ordinary
importance sampling [17]. When we combine mixture IS from
qα with control variates based on the component densities, the
estimated performance index is

µ̂qα,β =
1

n

n∑
i=1

P(A|Xi)p(Xi)−
∑J

j=1 βjqj(Xi)∑J
j=1 αjqj(Xi)

+

J∑
j=1

βj

(13)
for Xi ∼ qα, where βj are control parameters.

We can compare the variance of mixture importance sam-
pling to that of importance sampling with the individual
mixture components qj . Let β∗ be any minimizer over β of
Varqα(µ̂qα,β). It can be proved [22] that

Varqα(µ̂qα,β∗) ⩽ min
1⩽j⩽J

σ2
qj

nαj
, (14)

where

σ2
qj = Varqj

(
P(A|X)p(X)

qj(X)

)
, j = 1, . . . , J. (15)

If any one of the qj is optimal then we will get a zero variance
estimator of µ. In practice, the optimal value β∗ is not known,
and we can estimate it by multiple linear regression (MLR).
Letting Yi = P(A|Xi)p(Xi)/qα(Xi), i = 1, . . . , n and Zij =
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qj(Xi)/qα(Xi) − 1, i = 1, . . . , n, j = 1, . . . , J − 1, then the
β∗ can be estimated as the coefficients obtained from MLR
of Yi on Zij .

B. CoD of Control Variates

Considering the Markov chain structure of overtaking sce-
narios, the mixture importance function of states is

qα(s) =

J∑
j=1

αjqj(s), ∀s ∈ S, (16)

and the mixture importance function of actions given certain
state s ∈ S is

qα(a|s) =
J∑

j=1

αjqj(a|s), ∀a ∈ A+. (17)

Therefore, the mixture importance function of the overtaking
scenarios is

qα(x) = qα(s0)

m∏
k=0

qα(ak|sk), ∀x ∈ X , (18)

which is the product of m+ 2 individual mixture importance
functions. According to Eq. (13), the control variates are

qj0,...,jm+1
(x) = qj0(s0)qj1(a0|s0) · · · qjm+1

(am|sm), (19)

where j0, . . . , jm+1 = 1, . . . , J . Denote the corresponding
control parameters as βj0,...,jm+1 .

The number of control parameters is Jm+2, which will in-
crease exponentially with the dimension of scenarios, leading
to the CoD problem when solving optimal control parameters
via least squares method.

C. Sparse Control Variates

To address the CoD problem of CVs, we propose the
adaptive testing with sparse control variates (ATSCV) method
to apply sparse control variates (SCVs) for testing results in
NADE. The SCVs are constructed by the importance functions
of critical variables of testing scenarios. We use “sparse” to
describe these CVs because the critical variables are sparse in
NADE. The number of critical variables can be limited to a
much smaller number than the whole dimension of scenarios,
and so can the number of SCVs, which will greatly address
the CoD problem of CVs.

Using scenarios sampled from qα, the performance index
can be estimated in NADE as

µ̃qα =
1

n

n∑
i=1

P(A|Xi)p(Xc,i)

qα(Xc,i)
, Xi ∼ qα. (20)

Let Xl = {x ∈ X : |xc| = l}, l = 0, 1, . . . , L be the set of
scenarios that are controlled l steps, satisfying

⋃L
l=0 Xl = X .

Denote the performance index of scenarios over Xl as

µl ≜ Ep[IA(X)IXl
(X)], l = 0, 1, . . . , L. (21)

Similar to Eq. (20), the estimation of µl can be written as

µ̃l,qα =
1

n

n∑
i=1

P(A|Xi)IXl
(Xi)p(Xc,i)

qα(Xc,i)
, (22)

then we have

µ =

L∑
l=0

µl, (23)

and

µ̃qα =

L∑
l=0

1

n

n∑
i=1

P(A|Xi)IXl
(Xi)p(Xc,i)

qα(Xc,i)
=

L∑
l=0

µ̃l,qα .

(24)
Let qj1,...,jl(xc) = qj1(xc1) · · · qjl(xcl) be the importance

functions of critical variables that sample xc1 , . . . , xcl from
qj1 , . . . , qjl respectively, where j1, . . . , jl = 1, . . . , J , l =
1, . . . , L. We deal with the CoD problem by applying qj1,...,jl
instead of qj0,...,jm+1

as SCVs to the estimation µ̃l,qα . If the
control steps l ≪ m, then the number of control variates can
be reduced considerably, which will greatly address the CoD
problem. For a good enough control policy, this assumption
can be guaranteed. Since the numbers of SCVs with different
control steps are different, we group the testing results by their
control steps and apply the MLR within each group.

Denote the summation of the product of control variates and
corresponding control parameters as

hl(xc) ≜
∑

j1,...,jl

βj1,...,jlqj1,...,jl(xc), l = 1, . . . , L, (25)

and the summation of hl(xc) over x ∈ Xl as

θl ≜
∑
x∈Xl

hl(xc), l = 1, . . . , L. (26)

With the SCVs qj1,...,jl , the estimation µ̃l,qα can be adaptively
evaluated as

µ̃l,qα,βl
=

1

n

n∑
i=1

P(A|Xi)p(Xc,i)− hl(Xc,i)

qα(Xc,i)
IXl

(Xi) + θl

(27)
for l = 1, . . . , L. Note that for l = 0, the scenarios are sampled
from naturalistic distribution p, and therefore we do not apply
SCVs to its estimation, i.e.,

µ̃0,qα,β0
=

1

n

n∑
i=1

P(A|Xi)IX0
(Xi). (28)

Therefore, the performance index estimated by the ATSCV
method is

µ̃qα,β =

L∑
l=0

µ̃l,qα,βl
. (29)

IV. SIMULATION ANALYSIS

A. Generation of NDE

The goal of NDE is to generate human-like driving behav-
iors with probability distributions consistent with the natu-
ralistic driving data (NDD). Since the overtaking scenarios
are modeled with MDPs, after generating the initial state, the
actions of vehicles are determined by current states, which can
be sampled from empirical distributions obtained from NDD.
The decision process can be represented by a decision tree,
where each node denotes vehicle states and each path denotes
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a specific realization of vehicle behaviors. For simplicity, as
a replacement of empirical distributions, we use intelligent
driver model (IDM) [23] to model car-following scenarios and
stochastic minimizing overall braking induced by lane changes
(MOBIL) model [18] to govern lane-changing behaviors. All
vehicles select actions independently and simultaneously for
each time step (0.1 s).

The initial state of overtaking scenarios is set as

s0 = [8, R1,−5, 5,−5], R1 ∼ U(30, 32), (30)

where U is the uniform distribution. The overtaking scenario
has two stages separated by the time when BV cuts in. Before
cutting in, BV is controlled by IDM and stochastic MOBIL
model, while LV and AV run at a constant speed. After cutting
in, AV is controlled by IDM, while LV and BV run at a
constant speed. The cut-in maneuver is set completed within
one time step. The simulation continues until AV rear-ends
BV or AV passes BV.

B. Generation of NADE

The key of NADE generation is to construct new distri-
butions as the replacement of the naturalistic distributions in
NDE, for sampling actions of BV [18]. In NADE, we only
twist the action distribution of BV at critical moments, while
keeping naturalistic distribution as in NDE at other time steps.
To construct the importance function, at each time step, the
action of BV will be evaluated by maneuver criticality, which
is computed as a multiplication of exposure frequency p(a|s)
and maneuver challenge P(A|s, a), i.e.,

V (a|s) = P(A|s, a)p(a|s). (31)

The exposure frequency represents the probability of the action
a given the state s in NDE, while the maneuver challenge
measures the accident probability of AV given the state-action
pair (s, a).

Let pR be the probability of right lane change induced from
stochastic MOBIL model, then the exposure frequency is

p(a|s) =


pR, if a = ↱,

1− pR, if a = IDM(s) ∈ A,
0, otherwise,

(32)

where IDM(s) is the acceleration calculated by IDM given the
state s. Since the AV model is usually a black-box, we use
surrogate models (SMs) to approximate the maneuver chal-
lenge. In this paper, IDM and full velocity difference model
(FVDM) [23] are selected as SMs with adjusted parameters
as follows: 1) IDM. 2) FVDM-I. 3) FVDM-II with κ = 6.

Let Sj , j = 1, . . . , J denotes the accident event between BV
and the jth SM, where J = 3, then the maneuver challenge
can be approximated by P(Sj |s, a), j = 1, . . . , J . If BV
follows LV with a ∈ A, then we have

P(Sj |s, a) =
∑

a∈A+

P(Sj |s′, a)p(a|s′), (33)

where s′ is the next state of the overtaking scenario given the
state-action pair (s, a). The maneuver challenge P(Sj |s, a) can

Algorithm 1: Adaptive testing with sparse control
variates by multiple linear regression

Input: p, qα, Xc,i, and P(A|Xi), i = 1, . . . , n
Output: µ̃qα,β̂

1 initialize Yl and Zl as empty arrays, l = 0, . . . , L;
2 for i← 1 to n do
3 l← number of control steps of Xc,i;
4 if l = 0 then
5 append Yl with P(A|Xi);
6 append Zl with 0;
7 else
8 append Yl with P(A|Xi)p(Xc,i)/qα(Xc,i);
9 append Zl with vec(qj1,...,jl(Xc,i)/qα(Xc,i)),

j1, . . . , jl = 1, . . . , J − 1;
10 /* vec(·) is the vectorization operator */
11 end
12 end
13 for l← 0 to L do
14 Zl ← Zl − average(Zl);
15 MLR← multiple linear regression of Yl on Zl;
16 β̂l ← estimated coefficients from MLR;
17 η̂l ← estimated intercept from MLR;
18 µ̃l,qα,β̂l

← length(Yl)η̂l/n;
19 end
20 return µ̃qα,β̂ ←

∑L
l=0 µ̃l,qα,β̂l

;

be solved by recursion with Eq. (33) and the following two
terminal conditions.

1) If BV gets past by AV, then there will be no accident.
Therefore, P(Sj |s, a) = 0 for R2 < 0.

2) After BV cuts in, whether the accident will occur is
predicted by the jth SM and the state after cutting in.
Thus, for a = ↱, P(Sj |s, a) = 1 if AV rear-ends BV,
and otherwise P(Sj |s, a) = 0.

The criticality of BV can then be calculated as the summa-
tion of maneuver criticality over all actions, i.e.,

Cj(s) =
∑

a∈A+

Vj(a|s), j = 1, . . . , J, (34)

where Vj(a|s) = P(Sj |s, a)p(a|s). If any Cj(s) > 0, then the
moment of state s is defined as the critical moment and the
action of BV will be adjusted by sampling from the mixture
importance function qα(a|s) =

∑J
j=1 αjqj(a|s), where αj =

1/3, j = 1, . . . , J is the weight of the jth SM,

qj(a|s) =

{
ϵp(a|s) + (1− ϵ)

Vj(a|s)
Cj(s)

, if Cj(s) > 0,

p(a|s), otherwise,
(35)

where ϵ = 0.1 is the weight of the naturalistic distribution.
The ATSCV method can be applied while evaluating the

testing results in NADE. Algorithm 1 describes this process.
The key is to identify the critical variables of testing scenarios
to formulate the sparse control variates for each testing result.
Then the performance index of different control steps can
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Fig. 2. Accident rate of AV in NDE and NADE.
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Fig. 3. RHW of AV evaluation in NDE and NADE.

be estimated as the intercept obtained from multiple linear
regression of weighted testing results on corresponding sparse
control variates.

C. Evaluation Results

The accuracy and efficiency of AV evaluation in NDE and
NADE are validated in our simulation. Fig. 2 shows the
evaluation results of the accident rate per test in NDE and
NADE. The gray line represents the testing results in NDE,
and the bottom x-axis indicates the number of tests. The blue
line represents the testing results in NADE, and the top x-axis
for the number of tests. It can be seen that NADE obtains the
same accident rate estimation with NDE by a much smaller
number of tests.

The relative half-width (RHW) [11] is selected to measure
the evaluation precision. With the confidence level 100(1 −
γ)%, the RHW of µ̃qα,β is defined as

lr = zγ

√
Var(µ̃qα,β)

µ̃qα,β
, (36)
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Fig. 4. Accident rate of AV in NADE with and without SCVs.
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Fig. 5. RHW of AV evaluation in NADE with and without SCVs.

where zγ = Φ−1(1 − γ/2), γ = 0.1, and Φ−1 is the
inverse cumulative distribution function of the standard normal
distribution N (0, 1). Fig. 3 presents the minimum number of
tests for reaching a predetermined precision threshold (RHW
is 0.1) in NDE and NADE. It can be found that NADE requires
only 385 number of tests, while NDE requires 5.5× 104

number of tests, resulting in an acceleration of evaluation for
about 143 times.

To investigate the influences of the ATSCV method, we
compare the efficiency of AV evaluation in NADE with and
without SCVs. As shown in Fig. 4, NADE and ATSCV can
converge to the same accident rate after a sufficient number
of tests. To reach the 0.1 relative half-width, the total required
number of tests is 385 and 12, respectively, as shown in
Fig. 5. Therefore, the ATSCV method can further accelerate
the evaluation by about 30 times comparing with the evaluation
results in NADE. Fig. 6 presents the adjusted testing results
in NADE with and without SCVs, where each blue point is
the value

P(A|Xi)p(Xc,i)

qα(Xc,i)
, i = 1, . . . , n (37)
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Fig. 6. Adjusted testing results in NADE with and without SCVs.

in Eq. (20), and each red point represents the value

P(A|Xi)p(Xc,i)− hl(Xc,i)

qα(Xc,i)
+ θl (38)

in Eq. (27) for Xi ∈ Xl, l = 1, . . . , L or P(A|Xi) for Xi ∈ X0.
It can be seen that the ATSCV method is able to adjust the
testing results into a much narrower interval, resulting in a
considerable reduction of the estimation variance.

To further verify the reliability of the ATSCV method, the
simulation is repeated 100 times. Results show that the average
accelerated rate is 28.34 and the standard deviation is 6.27.
The required numbers of tests in all 100 experiments are less
than the evaluation results in NADE.

V. CONCLUSION

In this paper, the adaptive testing with sparse control
variates (ATSCV) method is proposed to adaptively evaluate
the testing results of connected and automated vehicles in
complex scenarios. The major idea is to apply SCVs of
critical variables for the evaluation of scenarios in NADE.
With scenarios modeled as MDPs, the mixture importance
functions are the summation of weighted defensive importance
functions obtained using SMs. The SCVs are constructed as
the importance functions of critical variables, each of which is
the product of a combination of importance functions obtained
by different SMs at critical moments. The overtaking scenarios
are investigated for safety testing. Comparing with the evalua-
tion results in NDE and NADE, the proposed ATSCV method
is always more efficient. In the near future, the theoretical
analysis with rigorous proofs of the ATSCV method will be
developed and more realistic cases with large-scale naturalistic
driving data will be studied.
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