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Abstract— Safety performance evaluation is critical for
developing and deploying connected and automated vehicles
(CAVs). One prevailing way is to design testing scenarios using
prior knowledge of CAVs, test CAVs in these scenarios, and
then evaluate their safety performances. However, significant
differences between CAVs and prior knowledge could severely
reduce the evaluation efficiency. Towards addressing this issue,
most existing studies focus on the adaptive design of testing
scenarios during the CAV testing process, but so far they
cannot be applied to high-dimensional scenarios. In this paper,
we focus on the adaptive safety performance evaluation by
leveraging the testing results, after the CAV testing process.
It can significantly improve the evaluation efficiency and be
applied to high-dimensional scenarios. Specifically, instead of
directly evaluating the unknown quantity (e.g., crash rates) of
CAV safety performances, we evaluate the differences between
the unknown quantity and known quantity (i.e., control variates).
By leveraging the testing results, the control variates could
be well-designed and optimized such that the differences are
close to zero, so the evaluation variance could be dramatically
reduced for different CAVs. To handle the high-dimensional
scenarios, we propose the sparse control variates method, where
the control variates are designed only for the sparse and critical
variables of scenarios. According to the number of critical
variables in each scenario, the control variates are stratified
into strata and optimized within each stratum using multiple
linear regression techniques. We justify the proposed method’s
effectiveness by rigorous theoretical analysis and empirical study
of high-dimensional overtaking scenarios.

Index Terms— Adaptive safety evaluation, connected and
automated vehicles, sparse control variates, high-dimensional
scenarios.
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I. INTRODUCTION

TESTING and evaluation of safety performance are major
challenges for the development and deployment of

connected and automated vehicles. One proposed way is to
test CAVs in the naturalistic driving environments (NDE),
observe their performances and make statistical comparisons
with human drivers. Testing CAVs in NDE can be conducted
through a combination of software simulation, test tracks, and
public roads. Due to the rarity of safety-critical events in
NDE, however, hundreds of millions of miles and sometimes
hundreds of billions of miles would be required to demonstrate
CAVs’ safety performance at the human-level [1], which is
intolerably inefficient. To improve the efficiency and accelerate
the evaluation process, the past few years have witnessed
increasingly rapid advances in the field of testing scenario
library generation (TSLG) [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], where safety-critical testing scenarios are
usually purposely generated utilizing prior knowledge of CAVs
such as surrogate models (SMs) of CAVs. However, due to
the high complexity and black-box properties of CAVs, there
exist significant performance dissimilarities between SMs and
the CAVs under test, which could severely compromise the
effectiveness of the generated testing scenarios and decrease
the evaluation efficiency.

Towards addressing this problem, several adaptive testing
and evaluation methods have been proposed [13], [14], [15],
[16]. The basic idea of existing methods is to adaptively
generate the testing scenarios during the testing process of
CAVs. With more testing results of CAVs, more posteriori
knowledge of CAVs can be obtained. Then the testing
scenarios can be more customized and optimized for the
CAVs under test. However, most existing methods can only
be applied to relatively simple scenarios, and how to handle
high-dimensional scenarios remains an open question. For
example, Mullins et al. [13] proposed an adaptive sampling
method that uses Gaussian process regression (GPR) and
k-nearest neighbors to discover performance boundaries of
the system under test and then updates the SM with new
testing results obtained near the performance boundaries.
Koren et al. [14] put forward an adaptive stress testing
method that uses deep reinforcement learning to find the most-
likely failure scenarios. Feng et al. [15] proposed an adaptive
testing scenario library generation method using Bayesian
optimization techniques with classification-based GPR and
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Fig. 1. Illustration of the adaptive testing and evaluation framework. The
focus of this study is the adaptive evaluation method for high-dimensional
scenarios, where the sparse control variates method is proposed.

acquisition functions to select subsequent testing scenarios
and then update the SMs with new testing results. Sun et al.
[16] presented an adaptive design of experiments method to
detect safety-critical scenarios, which uses supervised machine
learning models as SMs to approximate the testing results and
devises acquisition functions for updating the SMs.

The challenge for adaptively generating high-dimensional
scenarios comes from the compounding effects of the “Curse
of Rarity” (CoR) and the “Curse of Dimensionality” (CoD)
[17]. The CoR refers to the concept that, due to rarity of
safety-critical events, the amount of data needed to obtain
sufficient information grows dramatically. The CoD refers to
the dimensionality of variables to represent realistic scenarios,
which makes the computation cost increase exponentially
with the growth of scenario dimensions. Most existing
scenario-based testing approaches can only handle short
scenario segments with limited background road users, where
the decision variables are low-dimensional, which cannot
represent the full complexity and variability of the real-world
driving environment [18], [19], [20], [21], [22]. Towards
addressing this challenge, the naturalistic and adversarial
driving environment (NADE) method has been developed in
our previous work [23], which can generate high-dimensional
highway driving scenarios. However, the NADE did not
consider the performance gap between CAVs and SMs, which
could also slow down the testing process. To the best of
the authors’ knowledge, there is no existing work that can
handle the adaptive testing and evaluation problem in high-
dimensional scenarios, and the goal of this paper is to fill this
gap.

In general, the adaptive testing and evaluation methods
can be categorized into two types including adaptive testing
scenario generation and adaptive testing result evaluation,
which are complementary to each other as shown in Fig. 1.
Most existing studies focus on the former one, while
in this study, we focus on the latter one and propose
an adaptive evaluation framework that can handle high-
dimensional scenarios. We note that how to realize adaptive
testing scenario generation in high-dimensional scenarios also
remains unsolved, which we leave for future study. In the
proposed framework, we apply the NADE method to generate

Fig. 2. Illustration of the sparse control variates method. The SCV are
constructed by only considering critical variables (represented as red dots in
testing scenarios). The testing results are stratified into strata according to the
number of critical variables and then adjusted by SCV within each stratum.
Finally, the estimated crash rate is obtained by summing up these evaluation
results with proportion weights.

high-dimensional testing scenarios, where combinations of
multiple SMs are utilized to improve the robustness of the
generated scenarios for different CAVs under test. Then
we propose the sparse control variates (SCV) method to
adjust the testing results and evaluate CAVs’ performance
adaptively. Essentially, the SCV method could reduce the
estimation variance for the CAV under test, thereby decreasing
the required number of tests and accelerating the evaluation
process.

In the following paragraphs, we further explain the major
idea of the proposed SCV method. The control variates (CV)
method [24] is a popular variance reduction technique applied
in research areas such as deep learning [25] and reinforcement
learning [26]. Suppose we want to estimate µ := Ep[ f (X)]

by Monte Carlo simulation [27], where p is the probabilistic
distribution of the random variable X and f is the
performance index of interest. Instead of directly estimating
the unknown quantity µ, the control variates method estimates
the differences between the unknown quantity and known
quantity as µ′ := Ep[ f (X) − h(X) + θ ], where h(X) is the
control variate and θ := Ep[h(X)] is a known value. Then,
if h(X) correlates with the performance index f (X) (hence
can provide some information about f (X)), the estimation
variance of µ′ will always be less than directly estimating µ

[28]. For testing and evaluation of CAVs, the control variate
h(X) can be designed by utilizing the prior knowledge of
CAVs (e.g., different SMs). In addition, h(X) usually contains
adjustable control parameters, which can be optimized by
leveraging the testing results to minimize the estimation
variance. In such way, the information about the CAV
under test could be incorporated, which makes the adaptive
evaluation possible. However, due to the CoD, the computation
cost of optimal control parameters will increase exponentially
with the growth of scenario dimensions, so directly applying
the control variates method in high-dimensional scenarios is
problematic.

To address this problem, we propose the sparse control
variates method, as shown in Fig. 2. The key idea is to
construct the SCV by only considering the sparse but critical
variables (e.g., behaviors of principal other vehicles at critical
moments), following the similar idea from [23] that handles
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the CoD. However, the number of critical variables varies in
different testing scenarios, which cannot be handled by control
variates method. To address this issue, in the SCV method,
we stratify the testing scenarios into strata according to the
number of critical variables. Then the control parameters can
be optimized by multiple linear regression (MLR) [29] within
each stratum, and the final evaluation results are obtained by
summing up those evaluation results in each stratum with
the proportion weights. Since the number of critical variables
is much less than the dimension of testing scenarios, the
computation cost of optimal control parameters for SCV could
be greatly reduced, thus overcoming the CoD.

To verify the proposed method, we theoretically analyze
its accuracy, efficiency, and optimality. The theorems show
that our method is unbiased, and its estimation variance is
nearly proportional to the best one that all the SMs used
for generating testing scenarios could have. Moreover, under
certain assumptions about the SMs, our method can provide
a zero-variance estimator. To validate our method, the high-
dimensional overtaking scenarios with large-scale naturalistic
driving data are investigated. Simulation results show that our
method can further accelerate the evaluation process by about
one order of magnitude for different types of CAVs, comparing
with the estimation efficiency in NADE.

Compared with our previously published conference paper
about SCV [30], the new contributions of this paper are listed
as follows. First, we significantly extend our methodology
into high-dimensional scenarios and establish the theoretical
analysis for the accuracy, efficiency, and optimality of the
proposed method with rigorous proofs. Second, a more
realistic overtaking case study with large-scale naturalistic
driving data is investigated to systematically validate the
performances of our method.

The remainder of this paper is organized as follows.
Section II provides preliminary knowledge for the generation
of NDE and NADE. Section III formulates the adaptive testing
and evaluation problem and elaborates the challenges of apply-
ing control variates method for adaptive safety evaluation.
To address these challenges, in Section IV, the SCV method
is proposed. Then Section V and VI verify and validate
the accuracy and efficiency of the proposed method from
the theoretical and experimental perspectives, respectively.
Finally, Section VII concludes the paper and discusses future
research.

II. PRELIMINARIES

In this section, the preliminary knowledge for testing CAVs
in NDE and NADE is provided. In Subsection II-A, the
definitions for the scenario, crash event and crash rate are
introduced. Then the estimation method for crash rate in
NDE is described. To improve the estimation efficiency in
NDE, the importance sampling (IS) method is introduced
in Subsection II-B. As the IS method can not be applied
in high-dimensional scenarios, the generation of NADE is
described to overcome this challenge. The summary of
notation is listed in Table I.

A. Naturalistic Driving Environment Testing

As discussed above, the prevailing approach for CAV
evaluation is to test CAVs in NDE [31], observe their
performances, and make statistical comparisons with human
drivers. In NDE, one of the vehicles is the automated vehicle
(AV) under test and the others are background vehicles (BVs),
which can be formulated as Markov games [32]. A Markov
game for N agents (i.e., BVs) is defined by a set of states S
describing the positions and velocities of all vehicles and a
collection of action (i.e., acceleration) sets A1, . . . ,AN , one
for each BV in NDE. The total action space is denoted as
A := A1 × · · · ×AN . Then the scenario can be defined as

x := (s0, a0, . . . , sT−1, aT−1, sT ) ∈ X , (1)

where x represents the scenario, X is the set of all feasible
scenarios, st ∈ S is the state of all vehicles at time t , at ∈ A
is the action of all BVs at time t , and T is the time horizon.

Let � := X be the sample space incorporating all feasible
scenarios. Consider the probability space (�,F , P), where the
σ -algebra F := 2� is the power set of � and P is a probability
measure on F . Define P({x}) := p(x), ∀x ∈ X , where p is the
naturalistic distribution of scenarios in NDE. Let X : x 7→ x ,
∀x ∈ X be the random variable of scenarios. For testing and
evaluation of CAVs, the crash event is usually of the most
interest, which is the set of all crash scenarios and can be
denoted as F := {x ∈ X : sT ∈ Scrash} ∈ F , where Scrash is
the set of all crash states. Then the crash rate can be defined
as

µ := P(F) = Ep[IF (X)] =
∑
x∈X

P(F |x)p(x), (2)

where IF (X) is the indicator function of F (equal to 1 if
X ∈ F and 0 otherwise), and P(F |x) = IF (x), ∀x ∈ X . The
essence of testing AV in NDE is to estimate the crash rate µ

by Monte Carlo simulation, i.e.,

µ̂n =
1
n

n∑
i=1

P(F |X i ), X i ∼ p, (3)

where X i ∼ p means that X i are sampled i.i.d. from p.

B. Naturalistic and Adversarial Driving Environment
Generation

Due to the CoR, the estimation of crash rate in NDE is
intolerably inefficient. To improve the estimation efficiency,
the IS method [19], [20], [21] has been used to sample
testing scenarios from another distribution, i.e., the importance
function (IF) q , instead of the naturalistic distribution p. In IS,
the crash rate can be estimated as

µ̂q =
1
n

n∑
i=1

P(F |X i )p(X i )

q(X i )
, X i ∼ q. (4)

However, the IS method faces the CoD, i.e., its estimation
variance will increase exponentially with the growth of
scenario dimensions [33]. To address both the CoR and the
CoD, the naturalistic and adversarial driving environment [23]
has been proposed to only sample critical variables of testing

Authorized licensed use limited to: Tsinghua University. Downloaded on February 08,2024 at 10:31:13 UTC from IEEE Xplore.  Restrictions apply. 



1764 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2024

TABLE I
SUMMARY OF NOTATION

scenarios from the importance function, while other variables
remain their naturalistic distributions.

Denote x = (xc, x−c), where xc := {xc1 , . . . , xcl } is the
set of critical variables, c1, . . . , cl are critical moments, l =
0, 1, . . . , L is the number of critical variables, and x−c is the
set of other variables. Let Xc : x 7→ xc be the random variable
of critical variables and X−c : x 7→ x−c be the random
variable of other variables, then we have X = (Xc, X−c).
The importance function can then be formulated as q(x) =

q(xc)p(x−c). Therefore, the crash rate can be estimated in
NADE as

µ̃q =
1
n

n∑
i=1

P(F |X i )p(Xc,i )

q(Xc,i )
, X i ∼ q, (5)

where Xc,i is the random variable of critical variables of X i .

III. PROBLEM FORMULATION

In this section, the adaptive testing and evaluation problem
is analyzed and formulated. In Subsection III-A, two ways
for adaptive testing and evaluation are introduced, say
adaptive testing scenario generation and adaptive testing result
evaluation. We focus on the latter way in this paper, where
the CV method is used to minimize the estimation variance.
Then the CV method and its combination with mixture IS
are described in Subsection III-B. However, the CV method
can not be directly applied for adaptive evaluation in high-
dimensional scenarios due to the CoD. This challenge will be
elaborated in Subsection III-C.

A. Adaptive Testing and Evaluation

Due to the black-box property and various types of CAVs,
how to adaptively test and evaluate CAVs remains a major
challenge. One way of adaptive testing and evaluation is
adaptively generating testing scenarios. For example, we can
minimize the estimation variance by optimizing the importance
function, i.e.,

min
q∈Q

Varq

(
P(F |X)p(X)

q(X)

)
, (6)

where Q is the function space of q . Better importance
functions can be found by leveraging the posteriori knowledge
of CAVs obtained from testing results. Then the testing
scenarios can be adaptively generated by sampling from the
updated importance functions.

In this paper, we focus on another way of adaptive testing
and evaluation, i.e., adaptively evaluating testing results.
Specifically, the control variates method is adopted. This
problem can be formulated as

min
h∈H

Varq

(
P(F |X)p(X)

q(X)
− h(X)

)
, (7)

where h : X → R is the control variate and H is the function
space of h. The goal is to further reduce the estimation
variance by optimizing h in H, leveraging the testing results.

B. Control Variates

The control variates method is widely used as a basic
variance reduction technique in Monte Carlo simulation. The
most common way to use CV is through the regression
estimator [28]. Combining CV with the mixture importance
sampling is one way to establish the regression estimator,
where the linear combination of multiple importance functions
can serve as the CV. In mixture IS, the scenarios are sampled
from the mixture importance function qα :=

∑J
j=1 α j q j ,

where α j ⩾ 0,
∑J

j=1 α j = 1 and the q j are individual
importance functions. With multiple importance functions, the
CV can be constructed as

hβ(X) :=

J∑
j=1

β j

[
q j (X)

qα(X)
− 1

]
, (8)

where β j ∈ R are control parameters, β = (β1, . . . , βJ )⊤ is
the control vector, and q j/qα−1 are individual CV. Combining
hβ with mixture IS gives the estimation

µ̂qα,β =
1
n

n∑
i=1

[
P(F |X i )p(X i )

qα(X i )
− hβ(X i )

]
, X i ∼ qα. (9)
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The unbiasedness of µ̂qα,β is guaranteed since

Eqα [µ̂qα,β ] = Eqα

[
P(F |X)p(X)

qα(X)
− hβ(X)

]
= µ, (10)

where the second equality is obtained from the unbiasedness
of IS and Eqα [hβ(X)] = 0. The variance of µ̂qα,β can be
compared to that of IS with individual importance functions
q j . We have the following lemma.

Lemma 1: Let β∗ be any minimizer over β of Varqα (µ̂qα,β),
then

Varqα (µ̂qα,β∗) ⩽ min
1⩽ j⩽J

σ 2
q j

nα j
, (11)

where σ 2
q j

is the asymptotic variance of µ̂q j , i.e.,

σ 2
q j
:= Varq j

(
P(F |X)p(X)

q j (X)

)
, j = 1, . . . , J. (12)

Proof: This is the Theorem 2 in [34]. □
It can be seen from Lemma 1 that the variance of µ̂qα,β will

be zero if any one of the q j is optimal. This is a significant
feature because we can nearly omit the influence of all other
worse-performed importance functions. In applications, using
only one SM to test CAVs is usually under huge risk, because
the performance gap between the SM and various types of
CAVs may be too large to give a good estimation efficiency.
Therefore, to ensure the robustness, we can combine multiple
SMs to test the CAVs. However, there often exist poor-
performed SMs that will compromise the overall estimation
efficiency. Using mixture IS with CV provides an effective
way to ensure both good estimation efficiency and robustness
to various types of CAVs.

In practice, the optimal control vector β∗ is usually
unknown, and its estimation β̂ can be obtained by
MLR. Denote the weighted testing results as Yi :=

P(F |X i )p(X i )/qα(X i ), and the individual CV as Zi j :=

q j (X i )/qα(X i )− 1, i = 1, . . . , n, j = 1, . . . , J − 1. Then the
β̂ is given as the vector of coefficients obtained from MLR
of Yi on Zi j . In essence, this process is to search for the
best CV defined in Eq. (8) in the function space spanned by
individual CV q j/qα − 1. However, challenges of estimating
optimal control parameters arise when the testing scenarios
are high-dimensional.

C. CoD of Control Variates

Considering the Markov chain structure of scenarios, the
mixture importance function is given by

qα(x) = qα(s0)

T−1∏
t=0

qα(at |st ), ∀x ∈ X , (13)

where qα(s) :=
∑J

j=1 α j q j (s), ∀s ∈ S, and qα(a|s) :=∑J
j=1 α j q j (a|s), ∀a ∈ A, s ∈ S. It can be seen that qα(x)

is the product of T + 1 individual importance functions and
thus is also the summation of J T+1 combinations of different
importance functions at each time step. Specifically, these
individual importance functions are

q j0,..., jT (x) := q j0(s0)q j1(a0|s0) · · · q jT (aT−1|sT−1), (14)

where j0, . . . , jT = 1, . . . , J . Then the individual CV are
given by q j0,..., jT /qα − 1.

To find the estimation of optimal control parameters,
we have to conduct MLR of n weighted testing results
on J T+1 individual CV. The number J T+1 will increase
exponentially with the dimension of scenarios, leading to the
CoD of MLR. For example, if we have J = 10 importance
functions and the testing scenarios last for 10 seconds at a
frequency of 10 Hz, then the number of individual CV will be
10101. This means that a matrix with dimension 10101 should
be inverted in MLR, which is not tractable. Moreover, the
situation will get even worse if the duration of scenarios grows
to several hours, which are common in daily driving yet far
from being tractable. The following section aims to address
this challenge.

IV. ADAPTIVE SAFETY EVALUATION WITH SPARSE
CONTROL VARIATES

In this section, we will propose the sparse control
variates method to address the challenge discussed above in
Subsection IV-A and show how to estimate the optimal control
parameters in Subsection IV-B. Then, Subsection IV-C will
provide some discussions on our method.

A. Sparse Control Variates

We propose the sparse control variates method to address
the CoD of applying CV in high-dimensional scenarios.
Specifically, the SCV are constructed by only considering the
sparse but critical variables of testing scenarios. The number
of critical variables is usually much less than the dimension of
scenarios in NADE. Therefore, the number of SCV will also be
much less than the number of CV, which could greatly address
the CoD. However, as the number of critical variables varies
in different testing scenarios, the number of SCV will also
vary. Therefore, we can not directly apply SCV to all testing
results. Towards addressing this issue, we propose to stratify
the testing scenarios into strata according to the number of
critical variables and then optimize SCV within each stratum
by MLR.

Let Xl := {x ∈ X : |xc| = l}, l = 0, 1, . . . , L be the stratum
of scenarios with l critical variables, satisfying

⋃L
l=0 Xl = X .

Using mixture importance function qα , the estimation of crash
rate in NADE is given by

µ̃qα =
1
n

n∑
i=1

P(F |X i )p(Xc,i )

qα(Xc,i )
, X i ∼ qα. (15)

The crash rate of scenarios in stratum Xl can be denoted as
µl := Ep[P(F |X)IXl (X)], l = 0, 1, . . . , L , then we have

µ =

L∑
l=0

Ep[P(F |X)IXl (X)] =

L∑
l=0

µl . (16)

Similar to Eq. (15), the estimation of µl is given by

µ̃l,qα =
1
n

n∑
i=1

P(F |X i )IXl (X i )p(Xc,i )

qα(Xc,i )
, (17)
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and then we have

µ̃qα =

L∑
l=0

1
n

n∑
i=1

P(F |X i )IXl (X i )p(Xc,i )

qα(Xc,i )
=

L∑
l=0

µ̃l,qα .

(18)

Let q j1,..., jl (x) := p(x−c)q j1(xc1) · · · q jl (xcl ) be the
importance functions that sample x−c from p and sample
xc1 , . . . , xcl from q j1 , . . . , q jl , respectively, where j1, . . . , jl =
1, . . . , J , l = 1, . . . , L . Then the individual importance
functions of critical variables are given by q j1,..., jl (xc).
Denote the linear combination of these individual importance
functions as

h̃l(x) :=
∑

j1,..., jl

βl, j1,..., jl q j1,..., jl (x), l = 1, . . . , L , (19)

where βl, j1,..., jl ∈ R are associated control parameters. Then
the SCV are given by

hl(xc) :=
h̃l(xc)IXl (xc)

qα(xc)
− θl , l = 1, . . . , L , (20)

where θl := Eqα

[
h̃l(X)IXl (X)/qα(X)

]
. Therefore, the

estimation µ̃l,qα in Eq. (17) can be evaluated with SCV as

µ̃l,qα,βl =
1
n

n∑
i=1

[
P(F |X i )IXl (X i )p(Xc,i )

qα(Xc,i )
− hl(Xc,i )

]

=
1
n

n∑
i=1

P(F |X i )p(Xc,i )− h̃l(Xc,i )

qα(Xc,i )
IXl (X i )+ θl

(21)

for l = 1, . . . , L , where βl = vec(βl, j1,..., jl ) is the vector
of control parameters, and vec(·) is the vectorization operator
that flattens a tensor into a long vector. Note that there is no
critical variable for l = 0, hence we set β0 := 0. In summary,
the crash rate estimated by SCV method is given by

µ̃qα,β =

L∑
l=0

µ̃l,qα,βl , (22)

where β = {βl}
L
l=0 is the set of all control vectors.

B. Optimal Control Parameters

To estimate the optimal control parameters that minimize
the estimation variance, the MLR technique is applied in each
stratum. For l = 1, . . . , L , let Xl := {X i : X i ∈ Xl , i =
1, . . . , n} be the set of sampled scenarios, nl :=

∑n
i=1 IXl (X i )

be the number of tests, and dl := J l be the number of SCV.
Denote the vector of testing results as

Yl :=

[
P(F |X i )p(X i )

qα(X i )
for X i ∈ Xl

]
∈ Rnl , (23)

and the individual SCV as

h′j1,..., jl (xc) :=
q j1,..., jl (xc)

qα(xc)
−

∑
xc∈Xl

q j1,..., jl (xc), (24)

for l = 1, . . . , L . The matrix of individual SCV can be
formulated as

Hl :=
[
vec

(
h′j1,..., jl (Xc,i )

)
for X i ∈ Xl

]
∈ Rnl×dl , (25)

for l = 1, . . . , L . Then the regression formula is given by
Yl ≈ ηl + Hlβl . The MLR of Yl on Hl is to find the optimal
solution of the following optimization problem, i.e.,

min
ηl ,βl

L(ηl , βl) = ∥Yl − ηl − Hlβl∥
2
2. (26)

Letting the partial derivatives of L with respect to ηl
and βl both equal to zero, we have η̂l = 1⊤Yl/nl and
β̂l = (H⊤l Hl)

−1 H⊤l Yl , assuming that the control matrix Ml :=

H⊤l Hl ∈ Rdl×dl is invertible. Then the estimated crash rate is
µ̂l = nl η̂l/n. In practice, the control matrix may often not be
invertible, then we use singular value decomposition (SVD)
[35] to compute the regression coefficients β̂l . The rank of the
control matrix satisfies

rank(Ml) = rank(Hl) ⩽ min{nl , dl}. (27)

If nl < dl , then the control matrix Ml will be singular and
has utmost nl nonzero singular values. As the number of
tests nl in Xl will not grow exponentially with the number
of critical variables l, the rank of the control matrix will
also not. Therefore, solving the optimal control parameters for
SCV is tractable and will not face the CoD. We will further
demonstrate this in Subsection VI-E.

C. Discussions for SCV

We note that using the MLR technique is one of the most
common ways to use control variates [28]. Other ways might
exist, but finding them is out of scope and our approach is
complementary to the specific techniques using the control
variates. Only one performance index (the crash rate) is studied
in this paper, but our method can also be applied for other
crash-related indexes such as the probabilities of crash types,
crash severities, and near-miss events. For example, in our
previous work [2], [23], it is demonstrated that the importance
functions used for evaluating crash rate can also be used for
evaluating crash-related indexes mentioned above. Therefore,
our method can also be applied for adaptive evaluation of these
crash-related indexes.

V. THEORETICAL ANALYSIS

This section theoretically justifies the accuracy, efficiency
and optimality of the proposed SCV method.

A. Accuracy Analysis

We first prove that the estimation is unbiased.
Theorem 1: Let µ̃qα,β be given by Eq. (22) where

qα > 0 whenever P(F |x)p(x) > 0, then Eqα [µ̃qα,β ] = µ.
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Proof: To establish unbiasedness, write

Eqα [µ̃qα,β ] = Eqα

[ L∑
l=0

µ̃l,qα,βl

]

=

L∑
l=0

Eqα

[
µ̃l,qα −

h̃l(X)

qα(X)
IXl (X)+ θl

]

=

L∑
l=0

(µl − θl + θl) = µ. (28)

□
Remark 1: This theorem indicates that the estimation is

unbiased if the control parameters β are independent of
the sample data. It’s worth noting that in practice the
control parameters are usually estimated by the sample
data, which would bring a bias. However, that bias is
ordinarily negligible (please see Section 8.9 in [28] for more
discussions).

B. Efficiency Analysis

Next, we evaluate the efficiency of the SCV method. The
variance of the estimation µ̃qα,β is Varqα (µ̃qα,β) = σ 2

qα,β/n,
where σ 2

qα,β is the asymptotic variance of µ̃qα,β , i.e.,

σ 2
qα,β := Varqα

( L∑
l=0

P(F |X)p(X)− h̃l(X)

qα(X)
IXl (X)

)
(29)

for X ∼ qα . Denote

Zl :=
P(F |X)p(X)− h̃l(X)

qα(X)
IXl (X), l = 0, . . . , L , (30)

then the asymptotic variance σ 2
qα,β can be expressed as

σ 2
qα,β = Varqα

( L∑
l=0

Zl

)
= Eqα

( L∑
l=0

[
Zl − Eqα [Zl ]

])2 .

(31)

Let L ′ := L + 1, then by convexity of quadratic function and
Jensen’s inequality, we have

σ 2
qα,β ⩽ Eqα

[
L ′

L∑
l=0

(
Zl − Eqα [Zl ]

)2
]
= L ′

L∑
l=0

Varqα (Zl).

(32)

Denote σ 2
l,qα,βl

:= Varqα (Zl) and the asymptotic variance of
µ̃l,q over Xl as σ 2

l,q , i.e.,

σ 2
l,q :=

∑
x∈Xl

(
P(F |x)p(x)

q(x)
− µl

)2

q(x), l = 1, . . . , L ,

(33)

then we have the following theorem.

Theorem 2: If β∗ is any minimizer of σ 2
qα,β , then

σ 2
qα,β∗ ⩽ L ′σ 2

0,p,β0

+ L ′
L∑

l=1

min
j1,..., jl

 σ 2
l,q j1,..., jl∏l
ℓ=1 α jℓ

+ 3

(
µl∏l

ℓ=1 α jℓ

)2
 .

(34)

Proof: Take σ 2
1,qα,β1

as an example. Following the
proof in [34], we consider the particular vector β1 having
β1,1 = 0 and β1, j = −µ1α j/α1 for j > 1. Let r1(x) :=

[P(F |x)p(x)−µ1q1(x)]IX1(x), then we have
∑

x∈X r1(x) =

µ1(1−ξ1), where ξ1 :=
∑

x∈X1
q1(x), ξ1 ∈ [0, 1]. Substituting

these values, we find that for this β1,

Z1 =
P(F |X)p(X)− h̃1(X)

qα(X)
IX1(X)

=
P(F |X)p(X)− µ1q1 + µ1q1 − h̃1(X)

qα(X)
IX1(X)

=
r1(X)

qα(X)
+

µ1

α1
IX1(X), (35)

and Eqα [Z1] = µ1α1,1/α1, where α1,1 := α1 +
∑J

j=2 α j∑
x∈X1

q j (x), α1,1 ∈ [0, 1]. Therefore, we have

σ 2
1,qα,β1

= Eqα

[(
Z1 − Eqα [Z1]

)2
]

=

∑
x∈X

[
r1(x)

qα(x)
+

µ1

α1

(
IX1(x)− α1,1

)]2

qα(x)

=: V1,1 + V1,2 + V1,3, (36)

where

V1,1 :=
∑
x∈X

r2
1 (x)

qα(x)
=

∑
x∈X

[P(F |x)p(x)− µ1q1(x)]2

qα(x)
IX1(x)

⩽
∑

x∈X1

[P(F |x)p(x)− µ1q1(x)]2

α1q1(x)
=

σ 2
1,q1

α1
, (37)

V1,2 :=
∑
x∈X

2µ1r1(x)(IX1(x)− α1,1)

α1

=
2µ2

1(1− ξ1)(1− α1,1)

α1
⩽ 2

(
µ1

α1

)2

, (38)

and

V1,3 :=
∑
x∈X

[
µ1(IX1(x)− α1,1)

α1

]2

qα(x)

⩽
∑
x∈X

(
µ1

α1

)2

qα(x) =

(
µ1

α1

)2

. (39)

Therefore, we conclude that

σ 2
1,qα,β∗1

⩽ σ 2
1,qα,β1

⩽
σ 2

1,q1

α1
+ 3

(
µ1

α1

)2

. (40)

By making similar arguments for j = 2, . . . , J , we have

σ 2
1,qα,β∗1

⩽ min
j

{
σ 2

1,q j

α j
+ 3

(
µ1

α j

)2
}

. (41)
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It’s straightforward to extend the proof for l = 2, . . . , L , then
Eq. (34) is established. □

Remark 2: For l = 1, we expect to get approximately n1α j
scenarios in X1 from the importance function q j . The quantity
σ 2

1,q j
/α j in Eq. (41) is the variance we would obtain from

n1α j such scenarios alone. It is hard to imagine that we could
do better in general, because when σ 2

1,q j
= ∞ for all but

one of the mixture components it is guaranteed that those
bad components do not make the estimation worse than what
we would have had from the one good importance function.
Moreover, if there exists an optimal importance function in q j ,
then the minimum value of σ 2

1,q j
/α j will be zero, which will

greatly reduce the estimation variance. It should be noted that
the upper bound for variance in Eq. (41) contains a residual
term 3(µ1/α j )

2, which is the cost for stratifying the scenarios.

C. Optimality Analysis

Under the following assumptions, the estimation variance
of the SCV method can be zero.

Assumption 1: The scenarios in X0 will not be sampled by
qα , i.e., qα(x) = 0, ∀x ∈ X0.

Assumption 2: The control policy satisfies |xc| = 1, i.e., the
number of critical variables of all sampled scenarios is 1.

Assumption 3: There exists an optimal control policy such
that P(F |xc) = P(F |x), which means that the critical variable
xc can totally dominate the crash probability.

Assumption 4: There exists an optimal importance function
among q j . Without loss of generality, let q1 be the optimal
importance function, i.e., q1(xc) := P(F |xc)p(xc)/µ.

Theorem 3: Under Assumption 1, 2, 3 and 4, if β∗ is any
minimizer of σ 2

qα,β , then σ 2
qα,β∗ = 0.

Proof: From Assumption 1 and 2, we know that all
sampled scenarios contain only one critical variable, i.e.,
X = X1 and µ = µ1, then

Z1 =
r1(X)

qα(X)
+

µ1

α1
IX1(X) =

r1(X)

qα(X)
+

µ1

α1
, (42)

and Eqα [Z1] = µ1α1,1/α1 = µ1/α1. Therefore, the asymptotic
variance σ 2

1,qα,β1
is given by

σ 2
1,qα,β1

= Eqα

[(
Z1 − Eqα [Z1]

)2
]

=

∑
x∈X

r2
1 (x)

qα(x)
⩽

σ 2
1,q1

α1
. (43)

By Assumption 3 and 4, we have P(F |xc) = P(F |x) and
q1(xc) = P(F |xc)p(xc)/µ, then

σ 2
1,q1
=

∑
x∈X1

(
P(F |x)p(x)

q1(x)
− µ1

)2

q1(x)

=

∑
x∈X

(
P(F |xc)p(xc)

q1(xc)
− µ

)2

q1(x) = 0. (44)

Therefore, we conclude that σ 2
qα,β∗ = σ 2

1,qα,β1
= 0. □

Remark 3: Assumption 1 suggests that the scenarios in
X0 should not be sampled. As there is no crash in these
scenarios, sampling these scenarios will decrease estimation

Fig. 3. Illustrations of the four phases of overtaking scenarios (a) and the
passing phase (Phase II) of overtaking scenarios (b). In overtaking scenarios,
the AV will overtake BV and LV. In the passing phase, the AV will pass BV
and LV. While AV is passing, BV may cut in to overtake LV.

efficiency. Assumption 2 requires that the number of critical
variables is 1, because stratifying scenarios into different
strata leads to residual terms (e.g., 3(µ1/α j )

2 in Eq. (41))
in estimation variance that can not be eliminated. Note that
the Assumption 2 is needed just for our method to be
optimal. Cases with more critical variables are studied in
Theorem 2 and Section VI. Assumption 3 indicates that
the critical variables should dominate the crash probability,
since otherwise we may lose some critical information about
the scenarios and obtain the suboptimal testing results.
Assumption 4 requires that one of the importance functions
should be optimal. Although in practice these assumptions may
not be fully satisfied, they could provide useful guidance for
us to implement the SCV method.

Remark 4: The theorems in this section hold regardless of
the specifics of SMs, which may be constructed by traditional
traffic models or by neural networks.

VI. CASE STUDY

A. Overtaking Scenarios

The overtaking scenarios are illustrated in Fig. 3(a), where
the leading vehicle (LV) runs at the left lane, the background
vehicle (BV) follows LV and the automated vehicle (AV) will
overtake BV and LV. The overtaking process can be divided
into four phases [36]: (I) approach and right lane change phase
where AV detects a slow-moving BV and changes to the right
lane; (II) passing phase in which AV passes the BV and LV;
(III) left lane change phase where AV comes back to the left
lane; (IV) free-flowing phase in which AV keeps its lane and
velocity. In this paper, we focus on the passing phase, as shown
in Fig. 3(b). While AV is passing, BV may cut in to overtake
LV. If BV cuts in to the right lane, AV will follow BV and
may rear-end BV, leading to the crash.

The state of the overtaking scenarios can be formulated as

s :=
(
vBV, R1, Ṙ1, R2, Ṙ2

)
, (45)

where R1 := xLV − xBV, Ṙ1 := vLV − vBV, R2 := xBV −

xAV, and Ṙ2 := vBV − vAV. The xBV, xLV, xAV are the
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positions and vBV, vLV, vAV are the velocities of BV, LV and
AV, respectively. The action of the overtaking scenario is
defined as the actions of LV and BV, i.e., a := (aLV, aBV).
We note that the overtaking scenarios are more stochastic and
complicated than simple scenarios such as cut-in scenarios and
car-following scenarios, since the BV in overtaking scenarios
may have many chances to cut in, resulting in different cut-
in scenarios and car-following scenarios between BV and AV.
This is the reason why overtaking scenarios are always much
more high-dimensional than cut-in scenarios.

B. Generation of NDE

The essence of NDE is to provide a driving environment
where all BVs travel like humans. To generate NDE, the
probability distributions of the behaviors of all BVs should
be consistent with the naturalistic driving data (NDD) [31].
In this paper, the naturalistic distributions of free-flowing, car-
following, and cut-in behaviors are extracted from the NDD
of the Safety Pilot Model Deployment (SPMD) [37] program
and Integrated Vehicle-Based Safety System (IVBSS) [38] at
the University of Michigan, Ann Arbor.

The initial state is set as

s0 = [vBV,0, R1,0, Ṙ1,0, R2,0, Ṙ2,0], (46)

where vBV,0, R1,0, Ṙ1,0 are sampled from the naturalistic dis-
tributions of car-following scenarios, R2,0 ∼ U(20 m, 100 m),
Ṙ2,0 ∼ U(−10 m/s,−5 m/s). Here U represents the uniform
distribution. After sampling the initial state, all vehicles
select actions independently and simultaneously for each time
step (0.1 s). The cut-in maneuver of BV is simplified to
be completed within one time step for the convenience of
experiments. We note that applying our method in scenarios
with more realistic cut-in maneuvers is straightforward. The
car-following maneuver of AV is controlled by the intelligent
driver model (IDM) [39]. The simulation continues until AV
rear-ends BV or the maximum simulation time (20 s) reached.
Typically, the dimension of overtaking scenarios will exceed
1400 (201 time steps, each with 5 state variables and 2 action
variables), leading to the high-dimensionality challenge.
More technical details for the generation of NDE can be
found in [23].

C. Generation of NADE

The goal of NADE is to generate high-dimensional testing
scenarios where the behaviors of BVs are adjusted only at
critical moments, while keeping the naturalistic distribution
at other time steps [23]. To identify critical moments and
critical variables, the maneuver criticality of BV is evaluated
at each time step, which is defined as the multiplication of the
exposure frequency and the maneuver challenge [19], [20].
The exposure frequency represents the probability of each
action of BV given current state in NDE. The maneuver
challenge measures the crash probability between AV and
BV given current state and action. The moment where
BV’s maneuver criticality is larger than a threshold (e.g.,
0) is identified as the critical moment. Then the critical
variables can be selected as the states and actions at critical

Algorithm 1 Adaptive Safety Evaluation With Sparse
Control Variates by Multiple Linear Regression

Input: p, qα , Xc,i , and P(F |X i ), i = 1, . . . , n
Output: µ̃qα,β̂

, Varqα (µ̃qα,β̂
)

1 initialize Yl and Hl as empty arrays, l = 0, . . . , L;
2 initialize nl = 0, l = 0, . . . , L;
3 for i ← 1 to n do
4 l ← number of critical variables of Xc,i ;
5 nl ← nl + 1;
6 if l = 0 then
7 append Yl with P(F |X i );
8 append Hl with 0;
9 else

10 append Yl with P(F |X i )p(Xc,i )/qα(Xc,i );
11 append Hl with vec(q j1,..., jl (Xc,i )/qα(Xc,i )),

j1, . . . , jl = 1, . . . , J − 1;
12 end
13 end
14 for l ← 0 to L do
15 Hl ← Hl − average(Hl);
16 MLR← multiple linear regression of Yl on Hl ;
17 β̂l ← estimated coefficients from MLR;
18 η̂l ← estimated intercept from MLR;
19 µ̃l,qα,β̂l

← nl η̂l/n, Zl ← Yl − Hl β̂l ;
20 end
21 Z ← [Z0, . . . , ZL ];
22 µ̃qα,β̂

←
∑L

l=0 µ̃l,qα,β̂l
, Varqα (µ̃qα,β̂

)← Var(Z);
23 return µ̃qα,β̂

, Varqα (µ̃qα,β̂
);

moments. We note that many other safety metrics [40] are
also applicable for identifying the critical moments and critical
variables [2].

As the AVs under test are usually black-boxes, we use SMs
to approximate their maneuver challenges. In this paper, the
IDM and full velocity difference model (FVDM) [39] are
adopted as SMs: (1) IDM, denoted as SM-I; (2) FVDM with
amin = −1 m/s2, denoted as SM-II; (3) FVDM with amin =

−6 m/s2, denoted as SM-III. According to defensive IS [28],
the importance functions can be constructed as the weighted
average of the exposure frequency and the normalized
maneuver criticality. Then the NADE can be generated by
sampling actions of BV from importance functions at critical
moments, while keeping naturalistic distribution at other
time steps. Readers can find more technical details for the
generation of NADE in [23].

D. Application of SCV

As shown in Algorithm 1, the SCV method can be applied to
adjust the testing results and reduce estimation variance after
testing AV in NADE. The key is to use importance functions
of only sparse but critical variables to construct SCV, and then
optimize SCV in each stratum by MLR. Finally, the estimated
crash rate is given by the summation of evaluation results in
each stratum with the proportion weights.
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Fig. 4. Crash rates of AV estimated in NDE and NADE, where the ground
truth is the crash rate estimated by NDE with 3× 108 number of tests.

E. Evaluation Results

We validate the accuracy and efficiency of AV evaluation in
NDE and NADE by the simulation of overtaking scenarios.
The simulation is parallelly conducted using 100 threads
on a computer equipped with AMD® EPYC™ 7742 CPU
and 512 GB RAM. Fig. 4 shows the crash rates of AV
in NDE and NADE, respectively. The crash rate in NDE
is presented as the black line in Fig. 4, with the bottom
x-axis as its number of tests. The blue line in Fig. 4
represents the crash rate in NADE, and the top x-axis is the
number of tests. The light shadow gives the 90% confidence
interval. It can be seen that the crash rates in NDE and
NADE converge to the same value, while NADE requires
a much smaller number of tests. To measure the estimation
precision of the crash rate, the relative half-width (RHW)
[21] is adopted as the metric. The threshold of RHW is set
to 0.3. To reach this threshold, NADE requires 6.76× 106

number of tests, while NDE requires 1.21× 108 number of
tests, as shown in Fig. 5. Therefore, NADE can accelerate
the evaluation process by about 17.90 times compared with
NDE. We note that the acceleration ratio is smaller than
that in [23], because combinations of multiple various SMs
are applied in this paper, which improves the robustness
yet decreases the efficiency. The goal of the adaptive
evaluation is to improve the efficiency while keeping the
robustness.

To investigate the performance of the SCV method, the
accuracy and efficiency of AV evaluation in NADE with and
without SCV are compared. It can be seen in Fig. 6(a)-(e)
that the crash rates of NADE and SCV converge to the same
value for different number of tests. Fig. 6(f) shows that the
required numbers of tests (RNoT) of NADE and SCV for
reaching the RHW threshold are 6.76× 106 and 5.92× 105,
respectively, resulting in a further acceleration ratio of 11.42.
The weighted testing results before and after being adjusted by
SCV with different number of critical variables are compared
in Fig. 7(a)-(i), and Fig. 7(j) shows the total 107 adjusted
testing results. It can be seen that the SCV method is able
to adjust the testing results into a much narrower interval,
especially for relatively large number of critical variables

Fig. 5. RHW of AV evaluation in NDE and NADE, where the dashed line
represents the RHW threshold (0.3).

TABLE II

AARs OF SCV WHERE AV ADMITS IDMs WITH DIFFERENT amax (m/S2 ),
AND THE RIGHTMOST COLUMN CORRESPONDS TO THE VT-IDM

(e.g., l ⩾ 4), resulting in a considerable reduction of the
estimation variance. To investigate the computational time
complexity of SCV, we conduct the experiments for 10 times
to obtain the average wall-clock time (AWT). For the required
number of tests 5.92× 105, the AWT used by SCV is 213.31 s.

The detailed regression processes of the SCV method are
also investigated. Fig. 8 shows the number of tests, the number
of SCV and the maximum rank of the control matrices for the
number of critical variables l = 1, . . . , 9, respectively. Note
that for l ⩾ 10, we only use the first 9 critical variables to
construct the SCV. It can be seen that the maximum number of
tests appears at l = 6 and then the number of tests decreases
to a relatively low level. As shown in Eq. (27), the maximum
rank of the control matrices is the minimum value between
the number of tests and the number of SCV, and hence will
not grow exponentially with the number of critical variables,
although the number of SCV will do. Therefore, the SVD
of control matrices is always tractable in each stratum and
the optimal control parameters can be found to minimize the
estimation variance.

Due to the stochasticity of scenario generation processes,
the testing results are usually not the same in different
experiments. Therefore, to find the average performances,
we bootstrap the testing results by shuffling them 200 times
and obtain the frequency distributions of the RNoT in NDE
and NADE. The average RNoT of NDE and NADE are
1.20× 108 and 8.71× 106, respectively. Therefore, the average
acceleration ratio (AAR) of NADE with respect to NDE is
13.78. The testing results of SCV are also bootstrapped by
200 times. For cases with maximum RHW below 0.3, we use
the RNoT when the maximum RHW is reached. The average
RNoT of SCV is 1.29× 106, resulting in an AAR of 6.76 times
compared with NADE.
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Fig. 6. Crash rates of AV using NADE and SCV for (a) n = 5.92× 105, (b) n = 1.29× 106, (c) n = 4× 106, (d) n = 7× 106 and (e) n = 1× 107, where
n is the total number of tests and the dashed line is the crash rate estimated by NDE; (f) RHW of AV evaluation using NADE and SCV, where the dashed
line in black represents the RHW threshold (0.3) and 5 dashed lines in orange correspond to (a)-(e).

Fig. 7. Adjusted testing results by NADE and SCV for (a)-(i) the number of critical variables (l) from 1 to 9 and (j) total 107 testing results.

F. Generalizability Analysis

In the above experiments, we have set the AV model the
same as SM-I, i.e., they are both IDMs with same parameters.
To investigate the generalizability of the SCV method for
different AV models, the IDMs with different maximum
accelerations amax ∈ {0.5, 1.0, . . . , 6.0} m/s2 are chosen as

AV models. The AARs of SCV compared with NADE are
shown in Table II. The testing results of all AV models are
shuffled 200 times to compute the AARs. It can be seen that
the minimum AAR appears at amax = 2.0 m/s2, where the AV
model is the same as SM-I, while the maximum AAR appears
at amax = 3.5 m/s2. The mean AAR for different AV models
is 10.12. Therefore, the SCV method can further accelerate
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Fig. 8. Number of tests, number of SCV and maximum rank of control
matrices for different number of critical variables.

the evaluation process by about one order of magnitude for
various types of AV models. Moreover, the AARs of SCV with
AV models different from SM-I are always larger than that
of AV model the same as SM-I. The reason is that although
using AV models different from SM-I will do harm to both
the estimation efficiency of NADE and SCV, the damage to
NADE is more than to SCV.

In addition, we also select the calibrated IDM in [41]
(denoted as VT-IDM) as the AV model to further validate the
generalization performance of the SCV method. The testing
results shuffled 200 times give an AAR of 7.30 for SCV
compared with NADE, which is shown at the rightmost
column in Table II. Therefore, the SCV method can also
increase the estimation efficiency considerably for AV model
with completely different calibrated parameters. This is not a
surprising result because the only requirement for the SCV
method to work is that the SMs and the AV model have
some correlation, and more correlation contributes to more
variance reduction. Although the VT-IDM and IDM have
totally different parameters, they are still correlated to some
extent.

VII. CONCLUSION

In this paper, we propose an adaptive safety evaluation
framework for CAVs in high-dimensional scenarios with
a newly developed SCV method. To address the CoD,
the SCV are constructed by only considering the sparse
but critical variables of testing scenarios and stratified
into strata accordingly. By optimizing the SCV leveraging
the testing results within each stratum, the estimation
variance is significantly reduced for different CAVs adaptively,
accelerating the evaluation process. The accuracy, efficiency
and optimality of the proposed method are verified and
validated by both theoretical analysis and empirical studies.
Comparing with the evaluation efficiency in NDE and NADE,
our method is always more efficient, particularly for CAVs
that are different from SMs.

One limitation of this work is that the case study
has several simplifications (e.g., only overtaking scenarios)
for the convenience of experiments. How to extend our
approach for more complex scenarios deserves further
investigation. Moreover, this work only focuses on adaptive

testing result evaluation without considering adaptive testing
scenario generation. How to integrate both methods in high-
dimensional scenarios is also an important research topic.
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