Adaptive Safety Evaluation for Connected and Automated Vehicles With Sparse Control Variates

Jingxuan Yang[®], Haowei Sun[®], Honglin He[®], Yi Zhang[®], *Member, IEEE*, Henry X. Liu[®], *Member, IEEE*, and Shuo Feng[®], *Member, IEEE*

Abstract-Safety performance evaluation is critical for developing and deploying connected and automated vehicles (CAVs). One prevailing way is to design testing scenarios using prior knowledge of CAVs, test CAVs in these scenarios, and then evaluate their safety performances. However, significant differences between CAVs and prior knowledge could severely reduce the evaluation efficiency. Towards addressing this issue, most existing studies focus on the adaptive design of testing scenarios during the CAV testing process, but so far they cannot be applied to high-dimensional scenarios. In this paper, we focus on the adaptive safety performance evaluation by leveraging the testing results, after the CAV testing process. It can significantly improve the evaluation efficiency and be applied to high-dimensional scenarios. Specifically, instead of directly evaluating the unknown quantity (e.g., crash rates) of CAV safety performances, we evaluate the differences between the unknown quantity and known quantity (i.e., control variates). By leveraging the testing results, the control variates could be well-designed and optimized such that the differences are close to zero, so the evaluation variance could be dramatically reduced for different CAVs. To handle the high-dimensional scenarios, we propose the sparse control variates method, where the control variates are designed only for the sparse and critical variables of scenarios. According to the number of critical variables in each scenario, the control variates are stratified into strata and optimized within each stratum using multiple linear regression techniques. We justify the proposed method's effectiveness by rigorous theoretical analysis and empirical study of high-dimensional overtaking scenarios.

Index Terms—Adaptive safety evaluation, connected and automated vehicles, sparse control variates, high-dimensional scenarios.

Manuscript received 30 November 2022; revised 9 June 2023 and 1 August 2023; accepted 13 September 2023. Date of publication 27 September 2023; date of current version 2 February 2024. This work was supported in part by the National Key Research and Development Program under Grant 2021YFB2501200, in part by the National Natural Science Foundation of China under Grant 62133002, and in part by the Tsinghua-Toyota Joint Research Fund under Grant 20223930089. The Associate Editor for this article was R. Malekian. (*Corresponding author: Shuo Feng.*)

Jingxuan Yang and Honglin He are with the Department of Automation, Tsinghua University, Beijing 100084, China (e-mail: yangjx20@mails.tsinghua.edu.cn; hehl21@mails.tsinghua.edu.cn).

Haowei Sun and Henry X. Liu are with the Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109 USA (e-mail: haoweis@umich.edu; henryliu@umich.edu).

Yi Zhang is with the Department of Automation, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China (e-mail: zhyi@tsinghua.edu.cn).

Shuo Feng is with the Department of Automation, Tsinghua University, Beijing 100084, China, and also with the University of Michigan Transportation Research Institute, Ann Arbor, MI 48109 USA (e-mail: fshuo@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TITS.2023.3317078

I. INTRODUCTION

TESTING and evaluation of safety performance are major challenges for the development and deployment of connected and automated vehicles. One proposed way is to test CAVs in the naturalistic driving environments (NDE), observe their performances and make statistical comparisons with human drivers. Testing CAVs in NDE can be conducted through a combination of software simulation, test tracks, and public roads. Due to the rarity of safety-critical events in NDE, however, hundreds of millions of miles and sometimes hundreds of billions of miles would be required to demonstrate CAVs' safety performance at the human-level [1], which is intolerably inefficient. To improve the efficiency and accelerate the evaluation process, the past few years have witnessed increasingly rapid advances in the field of testing scenario library generation (TSLG) [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], where safety-critical testing scenarios are usually purposely generated utilizing prior knowledge of CAVs such as surrogate models (SMs) of CAVs. However, due to the high complexity and black-box properties of CAVs, there exist significant performance dissimilarities between SMs and the CAVs under test, which could severely compromise the effectiveness of the generated testing scenarios and decrease the evaluation efficiency.

Towards addressing this problem, several adaptive testing and evaluation methods have been proposed [13], [14], [15], [16]. The basic idea of existing methods is to adaptively generate the testing scenarios during the testing process of CAVs. With more testing results of CAVs, more posteriori knowledge of CAVs can be obtained. Then the testing scenarios can be more customized and optimized for the CAVs under test. However, most existing methods can only be applied to relatively simple scenarios, and how to handle high-dimensional scenarios remains an open question. For example, Mullins et al. [13] proposed an adaptive sampling method that uses Gaussian process regression (GPR) and k-nearest neighbors to discover performance boundaries of the system under test and then updates the SM with new testing results obtained near the performance boundaries. Koren et al. [14] put forward an adaptive stress testing method that uses deep reinforcement learning to find the mostlikely failure scenarios. Feng et al. [15] proposed an adaptive testing scenario library generation method using Bayesian optimization techniques with classification-based GPR and

1558-0016 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 1. Illustration of the adaptive testing and evaluation framework. The focus of this study is the adaptive evaluation method for high-dimensional scenarios, where the sparse control variates method is proposed.

acquisition functions to select subsequent testing scenarios and then update the SMs with new testing results. Sun et al. [16] presented an adaptive design of experiments method to detect safety-critical scenarios, which uses supervised machine learning models as SMs to approximate the testing results and devises acquisition functions for updating the SMs.

The challenge for adaptively generating high-dimensional scenarios comes from the compounding effects of the "Curse of Rarity" (CoR) and the "Curse of Dimensionality" (CoD) [17]. The CoR refers to the concept that, due to rarity of safety-critical events, the amount of data needed to obtain sufficient information grows dramatically. The CoD refers to the dimensionality of variables to represent realistic scenarios, which makes the computation cost increase exponentially with the growth of scenario dimensions. Most existing scenario-based testing approaches can only handle short scenario segments with limited background road users, where the decision variables are low-dimensional, which cannot represent the full complexity and variability of the real-world driving environment [18], [19], [20], [21], [22]. Towards addressing this challenge, the naturalistic and adversarial driving environment (NADE) method has been developed in our previous work [23], which can generate high-dimensional highway driving scenarios. However, the NADE did not consider the performance gap between CAVs and SMs, which could also slow down the testing process. To the best of the authors' knowledge, there is no existing work that can handle the adaptive testing and evaluation problem in highdimensional scenarios, and the goal of this paper is to fill this gap.

In general, the adaptive testing and evaluation methods can be categorized into two types including adaptive testing scenario generation and adaptive testing result evaluation, which are complementary to each other as shown in Fig. 1. Most existing studies focus on the former one, while in this study, we focus on the latter one and propose an adaptive evaluation framework that can handle highdimensional scenarios. We note that how to realize adaptive testing scenario generation in high-dimensional scenarios also remains unsolved, which we leave for future study. In the proposed framework, we apply the NADE method to generate

Fig. 2. Illustration of the sparse control variates method. The SCV are constructed by only considering critical variables (represented as red dots in testing scenarios). The testing results are stratified into strata according to the number of critical variables and then adjusted by SCV within each stratum. Finally, the estimated crash rate is obtained by summing up these evaluation results with proportion weights.

high-dimensional testing scenarios, where combinations of multiple SMs are utilized to improve the robustness of the generated scenarios for different CAVs under test. Then we propose the sparse control variates (SCV) method to adjust the testing results and evaluate CAVs' performance adaptively. Essentially, the SCV method could reduce the estimation variance for the CAV under test, thereby decreasing the required number of tests and accelerating the evaluation process.

In the following paragraphs, we further explain the major idea of the proposed SCV method. The control variates (CV) method [24] is a popular variance reduction technique applied in research areas such as deep learning [25] and reinforcement learning [26]. Suppose we want to estimate $\mu := \mathbb{E}_p[f(X)]$ by Monte Carlo simulation [27], where p is the probabilistic distribution of the random variable X and f is the performance index of interest. Instead of directly estimating the unknown quantity μ , the control variates method estimates the differences between the unknown quantity and known quantity as $\mu' := \mathbb{E}_p[f(X) - h(X) + \theta]$, where h(X) is the control variate and $\theta := \mathbb{E}_p[h(X)]$ is a known value. Then, if h(X) correlates with the performance index f(X) (hence can provide some information about f(X), the estimation variance of μ' will always be less than directly estimating μ [28]. For testing and evaluation of CAVs, the control variate h(X) can be designed by utilizing the prior knowledge of CAVs (e.g., different SMs). In addition, h(X) usually contains adjustable control parameters, which can be optimized by leveraging the testing results to minimize the estimation variance. In such way, the information about the CAV under test could be incorporated, which makes the adaptive evaluation possible. However, due to the CoD, the computation cost of optimal control parameters will increase exponentially with the growth of scenario dimensions, so directly applying the control variates method in high-dimensional scenarios is problematic.

To address this problem, we propose the sparse control variates method, as shown in Fig. 2. The key idea is to construct the SCV by only considering the sparse but critical variables (e.g., behaviors of principal other vehicles at critical moments), following the similar idea from [23] that handles

the CoD. However, the number of critical variables varies in different testing scenarios, which cannot be handled by control variates method. To address this issue, in the SCV method, we stratify the testing scenarios into strata according to the number of critical variables. Then the control parameters can be optimized by multiple linear regression (MLR) [29] within each stratum, and the final evaluation results are obtained by summing up those evaluation results in each stratum with the proportion weights. Since the number of critical variables is much less than the dimension of testing scenarios, the computation cost of optimal control parameters for SCV could be greatly reduced, thus overcoming the CoD.

To verify the proposed method, we theoretically analyze its accuracy, efficiency, and optimality. The theorems show that our method is unbiased, and its estimation variance is nearly proportional to the best one that all the SMs used for generating testing scenarios could have. Moreover, under certain assumptions about the SMs, our method can provide a zero-variance estimator. To validate our method, the highdimensional overtaking scenarios with large-scale naturalistic driving data are investigated. Simulation results show that our method can further accelerate the evaluation process by about one order of magnitude for different types of CAVs, comparing with the estimation efficiency in NADE.

Compared with our previously published conference paper about SCV [30], the new contributions of this paper are listed as follows. First, we significantly extend our methodology into high-dimensional scenarios and establish the theoretical analysis for the accuracy, efficiency, and optimality of the proposed method with rigorous proofs. Second, a more realistic overtaking case study with large-scale naturalistic driving data is investigated to systematically validate the performances of our method.

The remainder of this paper is organized as follows. Section II provides preliminary knowledge for the generation of NDE and NADE. Section III formulates the adaptive testing and evaluation problem and elaborates the challenges of applying control variates method for adaptive safety evaluation. To address these challenges, in Section IV, the SCV method is proposed. Then Section V and VI verify and validate the accuracy and efficiency of the proposed method from the theoretical and experimental perspectives, respectively. Finally, Section VII concludes the paper and discusses future research.

II. PRELIMINARIES

In this section, the preliminary knowledge for testing CAVs in NDE and NADE is provided. In Subsection II-A, the definitions for the scenario, crash event and crash rate are introduced. Then the estimation method for crash rate in NDE is described. To improve the estimation efficiency in NDE, the importance sampling (IS) method is introduced in Subsection II-B. As the IS method can not be applied in high-dimensional scenarios, the generation of NADE is described to overcome this challenge. The summary of notation is listed in Table I.

A. Naturalistic Driving Environment Testing

As discussed above, the prevailing approach for CAV evaluation is to test CAVs in NDE [31], observe their performances, and make statistical comparisons with human drivers. In NDE, one of the vehicles is the automated vehicle (AV) under test and the others are background vehicles (BVs), which can be formulated as Markov games [32]. A Markov game for *N* agents (i.e., BVs) is defined by a set of states *S* describing the positions and velocities of all vehicles and a collection of action (i.e., acceleration) sets A_1, \ldots, A_N , one for each BV in NDE. The total action space is denoted as $A := A_1 \times \cdots \times A_N$. Then the scenario can be defined as

$$x := (s_0, a_0, \dots, s_{T-1}, a_{T-1}, s_T) \in \mathcal{X}, \tag{1}$$

where x represents the scenario, \mathcal{X} is the set of all feasible scenarios, $s_t \in S$ is the state of all vehicles at time t, $a_t \in \mathcal{A}$ is the action of all BVs at time t, and T is the time horizon.

Let $\Omega := \mathcal{X}$ be the sample space incorporating all feasible scenarios. Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where the σ -algebra $\mathcal{F} := 2^{\Omega}$ is the power set of Ω and \mathbb{P} is a probability measure on \mathcal{F} . Define $\mathbb{P}(\{x\}) := p(x), \forall x \in \mathcal{X}$, where p is the naturalistic distribution of scenarios in NDE. Let $X : x \mapsto x$, $\forall x \in \mathcal{X}$ be the random variable of scenarios. For testing and evaluation of CAVs, the crash event is usually of the most interest, which is the set of all crash scenarios and can be denoted as $F := \{x \in \mathcal{X} : s_T \in \mathcal{S}_{crash}\} \in \mathcal{F}$, where \mathcal{S}_{crash} is the set of all crash states. Then the crash rate can be defined as

$$\mu := \mathbb{P}(F) = \mathbb{E}_p[\mathbb{I}_F(X)] = \sum_{x \in \mathcal{X}} \mathbb{P}(F|x)p(x), \qquad (2)$$

where $\mathbb{I}_F(X)$ is the indicator function of F (equal to 1 if $X \in F$ and 0 otherwise), and $\mathbb{P}(F|x) = \mathbb{I}_F(x), \forall x \in \mathcal{X}$. The essence of testing AV in NDE is to estimate the crash rate μ by Monte Carlo simulation, i.e.,

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mathbb{P}(F|X_i), \quad X_i \sim p, \tag{3}$$

where $X_i \sim p$ means that X_i are sampled i.i.d. from p.

B. Naturalistic and Adversarial Driving Environment Generation

Due to the CoR, the estimation of crash rate in NDE is intolerably inefficient. To improve the estimation efficiency, the IS method [19], [20], [21] has been used to sample testing scenarios from another distribution, i.e., the importance function (IF) q, instead of the naturalistic distribution p. In IS, the crash rate can be estimated as

$$\hat{\mu}_{q} = \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{P}(F|X_{i})p(X_{i})}{q(X_{i})}, \quad X_{i} \sim q.$$
(4)

However, the IS method faces the CoD, i.e., its estimation variance will increase exponentially with the growth of scenario dimensions [33]. To address both the CoR and the CoD, the naturalistic and adversarial driving environment [23] has been proposed to only sample critical variables of testing

TABLE I									
SUMMARY OF NOTATION									

Notation	Definition	Notation	Definition	Notation	Definition
a, a_t	action, action at time t	q_j	j-th IF	α, α_j	mixture weights, j-th weight
a_{\min}, a_{\max}	min and max accelerations	q_{lpha}	mixture IF	β, β_j	control parameters, j -th parameter
\mathcal{A}	action space	q_{j_0,\ldots,j_T}	individual IFs	$\beta^*, \hat{\beta}$	optimal control parameter, its estimation
f	performance index	Q T	function space of IFs	β_{l,j_1,\ldots,j_l}	control parameters in \mathcal{X}_l
F	crash event	R_1	range between LV and BV	$\hat{\beta}_l$	estimation of β_{l,j_1,\ldots,j_l}
${\cal F}$	σ -algebra	R_2	range between BV and AV	θ	expectation of CV
h	control variates	\dot{R}_1	range rate between LV and BV	θ_l	expectation of SCV in \mathcal{X}_l
h_{eta}	linear combination of IFs	\dot{R}_2	range rate between BV and AV	μ	crash rate in NDE
\tilde{h}_l	h_{β} in \mathcal{X}_{l}	R	set of real numbers	μ_l	crash rate in \mathcal{X}_l
h_l	SCV in <i>l</i> -th stratum	s, s_t	state, state at time t	$\hat{\mu}_l$	estimation of μ in \mathcal{X}_l
${\cal H}$	function space of CV	S	state space	$\tilde{\mu}_{l,q_{\alpha}}$	estimation of μ_l with mixture IS
I	indicator function	t, T	time step, time horizon	$\hat{\mu}_n$	estimation of μ in NDE
J	total number of IFs	U	uniform distribution	$\hat{\mu}_q$	estimation of μ with IS
l	number of critical variables	$v_{ m LV}, v_{ m BV}, v_{ m AV}$	velocities of LV, BV, AV	$\tilde{\mu}_q$	estimation of μ in NADE
\mathcal{L}	objective function of MLR	$x_{ m LV}, x_{ m BV}, x_{ m AV}$	positions of LV, BV, AV	$\tilde{\mu}_{q_{\alpha}}$	estimation of μ with mixture IS
n	total number of tests	x, x_i	scenario, scenario of <i>i</i> -th test	$\hat{\mu}_{q_{\alpha},\beta}$	estimation of μ by mixture IS with CV
N	total number of BVs	x_c, x_{-c}	critical and other variables of x	$\tilde{\mu}_{l,q_{\alpha},\beta_{l}}$	estimation of μ with SCV in \mathcal{X}_l
p	naturalistic distribution	X, X_i, X_c, X_{-c}	random variable of x, x_i, x_c, x_{-c}	$\tilde{\mu}_{q_{\alpha},\beta}$	estimation of μ with SCV
P	probability measure	<i>X</i>	scenario space	$\sigma_{q_i}^2$	asymptotic variance of $\hat{\mu}_{q_i}$
q	importance function	\mathcal{X}_l	scenario stratum with $l \ \mathrm{CV}$	$\sigma^{2}_{q_{\alpha},\beta}$	asymptotic variance of $\tilde{\mu}_{q_{\alpha},\beta}$

scenarios from the importance function, while other variables remain their naturalistic distributions.

Denote $x = (x_c, x_{-c})$, where $x_c := \{x_{c_1}, \ldots, x_{c_l}\}$ is the set of critical variables, c_1, \ldots, c_l are critical moments, $l = 0, 1, \ldots, L$ is the number of critical variables, and x_{-c} is the set of other variables. Let $X_c : x \mapsto x_c$ be the random variable of critical variables and $X_{-c} : x \mapsto x_{-c}$ be the random variable of other variables, then we have $X = (X_c, X_{-c})$. The importance function can then be formulated as $q(x) = q(x_c)p(x_{-c})$. Therefore, the crash rate can be estimated in NADE as

$$\tilde{\mu}_{q} = \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{P}(F|X_{i}) p(X_{c,i})}{q(X_{c,i})}, \quad X_{i} \sim q,$$
(5)

where $X_{c,i}$ is the random variable of critical variables of X_i .

III. PROBLEM FORMULATION

In this section, the adaptive testing and evaluation problem is analyzed and formulated. In Subsection III-A, two ways for adaptive testing and evaluation are introduced, say adaptive testing scenario generation and adaptive testing result evaluation. We focus on the latter way in this paper, where the CV method is used to minimize the estimation variance. Then the CV method and its combination with mixture IS are described in Subsection III-B. However, the CV method can not be directly applied for adaptive evaluation in highdimensional scenarios due to the CoD. This challenge will be elaborated in Subsection III-C.

A. Adaptive Testing and Evaluation

Due to the black-box property and various types of CAVs, how to adaptively test and evaluate CAVs remains a major challenge. One way of adaptive testing and evaluation is adaptively generating testing scenarios. For example, we can minimize the estimation variance by optimizing the importance function, i.e.,

$$\min_{q \in \mathcal{Q}} \operatorname{Var}_{q}\left(\frac{\mathbb{P}(F|X)p(X)}{q(X)}\right),\tag{6}$$

where Q is the function space of q. Better importance functions can be found by leveraging the posteriori knowledge of CAVs obtained from testing results. Then the testing scenarios can be adaptively generated by sampling from the updated importance functions.

In this paper, we focus on another way of adaptive testing and evaluation, i.e., adaptively evaluating testing results. Specifically, the control variates method is adopted. This problem can be formulated as

$$\min_{h \in \mathcal{H}} \operatorname{Var}_{q} \left(\frac{\mathbb{P}(F|X)p(X)}{q(X)} - h(X) \right), \tag{7}$$

where $h : \mathcal{X} \to \mathbb{R}$ is the control variate and \mathcal{H} is the function space of *h*. The goal is to further reduce the estimation variance by optimizing *h* in \mathcal{H} , leveraging the testing results.

B. Control Variates

The control variates method is widely used as a basic variance reduction technique in Monte Carlo simulation. The most common way to use CV is through the regression estimator [28]. Combining CV with the mixture importance sampling is one way to establish the regression estimator, where the linear combination of multiple importance functions can serve as the CV. In mixture IS, the scenarios are sampled from the mixture importance function $q_{\alpha} := \sum_{j=1}^{J} \alpha_j q_j$, where $\alpha_j \ge 0$, $\sum_{j=1}^{J} \alpha_j = 1$ and the q_j are individual importance functions. With multiple importance functions, the CV can be constructed as

$$h_{\beta}(X) := \sum_{j=1}^{J} \beta_j \left[\frac{q_j(X)}{q_{\alpha}(X)} - 1 \right],$$
 (8)

where $\beta_j \in \mathbb{R}$ are control parameters, $\beta = (\beta_1, \dots, \beta_J)^{\top}$ is the control vector, and $q_j/q_{\alpha} - 1$ are individual CV. Combining h_{β} with mixture IS gives the estimation

$$\hat{\mu}_{q_{\alpha},\beta} = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\mathbb{P}(F|X_i) p(X_i)}{q_{\alpha}(X_i)} - h_{\beta}(X_i) \right], \quad X_i \sim q_{\alpha}.$$
(9)

The unbiasedness of $\hat{\mu}_{q_{\alpha},\beta}$ is guaranteed since

$$\mathbb{E}_{q_{\alpha}}[\hat{\mu}_{q_{\alpha},\beta}] = \mathbb{E}_{q_{\alpha}}\left[\frac{\mathbb{P}(F|X)p(X)}{q_{\alpha}(X)} - h_{\beta}(X)\right] = \mu, \quad (10)$$

where the second equality is obtained from the unbiasedness of IS and $\mathbb{E}_{q_{\alpha}}[h_{\beta}(X)] = 0$. The variance of $\hat{\mu}_{q_{\alpha},\beta}$ can be compared to that of IS with individual importance functions q_i . We have the following lemma.

Lemma 1: Let β^* be any minimizer over β of $\operatorname{Var}_{q_\alpha}(\hat{\mu}_{q_\alpha,\beta})$, then

$$\operatorname{Var}_{q_{\alpha}}(\hat{\mu}_{q_{\alpha},\beta^{*}}) \leqslant \min_{1 \leqslant j \leqslant J} \frac{\sigma_{q_{j}}^{2}}{n\alpha_{j}}, \tag{11}$$

where $\sigma_{q_j}^2$ is the asymptotic variance of $\hat{\mu}_{q_j}$, i.e.,

$$\sigma_{q_j}^2 := \operatorname{Var}_{q_j}\left(\frac{\mathbb{P}(F|X)p(X)}{q_j(X)}\right), \quad j = 1, \dots, J.$$
(12)

Proof: This is the Theorem 2 in [34].

It can be seen from Lemma 1 that the variance of $\hat{\mu}_{q_{\alpha},\beta}$ will be zero if any one of the q_i is optimal. This is a significant feature because we can nearly omit the influence of all other worse-performed importance functions. In applications, using only one SM to test CAVs is usually under huge risk, because the performance gap between the SM and various types of CAVs may be too large to give a good estimation efficiency. Therefore, to ensure the robustness, we can combine multiple SMs to test the CAVs. However, there often exist poorperformed SMs that will compromise the overall estimation efficiency. Using mixture IS with CV provides an effective way to ensure both good estimation efficiency and robustness to various types of CAVs.

In practice, the optimal control vector β^* is usually unknown, and its estimation $\hat{\beta}$ can be obtained by MLR. Denote the weighted testing results as Y_i := $\mathbb{P}(F|X_i)p(X_i)/q_{\alpha}(X_i)$, and the individual CV as $Z_{ij} :=$ $q_i(X_i)/q_\alpha(X_i) - 1, i = 1, \dots, n, j = 1, \dots, J - 1$. Then the $\hat{\beta}$ is given as the vector of coefficients obtained from MLR of Y_i on Z_{ii} . In essence, this process is to search for the best CV defined in Eq. (8) in the function space spanned by individual CV $q_i/q_\alpha - 1$. However, challenges of estimating optimal control parameters arise when the testing scenarios are high-dimensional.

C. CoD of Control Variates

Considering the Markov chain structure of scenarios, the mixture importance function is given by

$$q_{\alpha}(x) = q_{\alpha}(s_0) \prod_{t=0}^{T-1} q_{\alpha}(a_t|s_t), \ \forall x \in \mathcal{X},$$
(13)

where $q_{\alpha}(s) := \sum_{j=1}^{J} \alpha_j q_j(s), \forall s \in S$, and $q_{\alpha}(a|s) :=$ $\sum_{j=1}^{J} \alpha_j q_j(a|s), \forall a \in \mathcal{A}, s \in \mathcal{S}$. It can be seen that $q_{\alpha}(x)$ is the product of T + 1 individual importance functions and thus is also the summation of J^{T+1} combinations of different importance functions at each time step. Specifically, these individual importance functions are

$$q_{j_0,\dots,j_T}(x) := q_{j_0}(s_0)q_{j_1}(a_0|s_0)\cdots q_{j_T}(a_{T-1}|s_{T-1}), \quad (14)$$

where $j_0, \ldots, j_T = 1, \ldots, J$. Then the individual CV are given by $q_{j_0,\ldots,j_T}/q_\alpha - 1$.

To find the estimation of optimal control parameters, we have to conduct MLR of n weighted testing results on J^{T+1} individual CV. The number J^{T+1} will increase exponentially with the dimension of scenarios, leading to the CoD of MLR. For example, if we have J = 10 importance functions and the testing scenarios last for 10 seconds at a frequency of 10 Hz, then the number of individual CV will be 10^{101} . This means that a matrix with dimension 10^{101} should be inverted in MLR, which is not tractable. Moreover, the situation will get even worse if the duration of scenarios grows to several hours, which are common in daily driving yet far from being tractable. The following section aims to address this challenge.

IV. ADAPTIVE SAFETY EVALUATION WITH SPARSE CONTROL VARIATES

In this section, we will propose the sparse control variates method to address the challenge discussed above in Subsection IV-A and show how to estimate the optimal control parameters in Subsection IV-B. Then, Subsection IV-C will provide some discussions on our method.

A. Sparse Control Variates

We propose the sparse control variates method to address the CoD of applying CV in high-dimensional scenarios. Specifically, the SCV are constructed by only considering the sparse but critical variables of testing scenarios. The number of critical variables is usually much less than the dimension of scenarios in NADE. Therefore, the number of SCV will also be much less than the number of CV, which could greatly address the CoD. However, as the number of critical variables varies in different testing scenarios, the number of SCV will also vary. Therefore, we can not directly apply SCV to all testing results. Towards addressing this issue, we propose to stratify the testing scenarios into strata according to the number of critical variables and then optimize SCV within each stratum by MLR.

Let $X_l := \{x \in X : |x_c| = l\}, l = 0, 1, ..., L$ be the stratum of scenarios with *l* critical variables, satisfying $\bigcup_{l=0}^{L} \mathcal{X}_{l} = \mathcal{X}$. Using mixture importance function q_{α} , the estimation of crash rate in NADE is given by

$$\tilde{\mu}_{q_{\alpha}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{P}(F|X_i) p(X_{c,i})}{q_{\alpha}(X_{c,i})}, \quad X_i \sim q_{\alpha}.$$
(15)

The crash rate of scenarios in stratum \mathcal{X}_l can be denoted as $\mu_l := \mathbb{E}_p[\mathbb{P}(F|X)\mathbb{I}_{\mathcal{X}_l}(X)], l = 0, 1, \dots, L$, then we have

$$\mu = \sum_{l=0}^{L} \mathbb{E}_p[\mathbb{P}(F|X)\mathbb{I}_{\mathcal{X}_l}(X)] = \sum_{l=0}^{L} \mu_l.$$
(16)

Similar to Eq. (15), the estimation of μ_l is given by

$$\tilde{\mu}_{l,q_{\alpha}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{P}(F|X_i) \mathbb{I}_{\mathcal{X}_l}(X_i) p(X_{c,i})}{q_{\alpha}(X_{c,i})}, \qquad (17)$$

1765

Authorized licensed use limited to: Tsinghua University. Downloaded on February 08,2024 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

and then we have

$$\tilde{\mu}_{q_{\alpha}} = \sum_{l=0}^{L} \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{P}(F|X_{i})\mathbb{I}_{\mathcal{X}_{l}}(X_{i})p(X_{c,i})}{q_{\alpha}(X_{c,i})} = \sum_{l=0}^{L} \tilde{\mu}_{l,q_{\alpha}}.$$
(18)

Let $q_{j_1,...,j_l}(x) := p(x_{-c})q_{j_1}(x_{c_1})\cdots q_{j_l}(x_{c_l})$ be the importance functions that sample x_{-c} from p and sample $x_{c_1},...,x_{c_l}$ from $q_{j_1},...,q_{j_l}$, respectively, where $j_1,...,j_l = 1,...,J$, l = 1,...,L. Then the individual importance functions of critical variables are given by $q_{j_1,...,j_l}(x_c)$. Denote the linear combination of these individual importance functions as

$$\tilde{h}_l(x) := \sum_{j_1, \dots, j_l} \beta_{l, j_1, \dots, j_l} q_{j_1, \dots, j_l}(x), \ l = 1, \dots, L,$$
(19)

where $\beta_{l, j_1, ..., j_l} \in \mathbb{R}$ are associated control parameters. Then the SCV are given by

$$h_l(x_c) := \frac{\tilde{h}_l(x_c) \mathbb{I}_{\mathcal{X}_l}(x_c)}{q_{\alpha}(x_c)} - \theta_l, \ l = 1, \dots, L,$$
(20)

where $\theta_l := \mathbb{E}_{q_\alpha} [\tilde{h}_l(X) \mathbb{I}_{\chi_l}(X) / q_\alpha(X)]$. Therefore, the estimation $\tilde{\mu}_{l,q_\alpha}$ in Eq. (17) can be evaluated with SCV as

$$\tilde{\mu}_{l,q_{\alpha},\beta_{l}} = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\mathbb{P}(F|X_{i})\mathbb{I}_{\mathcal{X}_{l}}(X_{i})p(X_{c,i})}{q_{\alpha}(X_{c,i})} - h_{l}(X_{c,i}) \right]$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{P}(F|X_{i})p(X_{c,i}) - \tilde{h}_{l}(X_{c,i})}{q_{\alpha}(X_{c,i})} \mathbb{I}_{\mathcal{X}_{l}}(X_{i}) + \theta_{l}$$
(21)

for l = 1, ..., L, where $\beta_l = \text{vec}(\beta_{l, j_1, ..., j_l})$ is the vector of control parameters, and $\text{vec}(\cdot)$ is the vectorization operator that flattens a tensor into a long vector. Note that there is no critical variable for l = 0, hence we set $\beta_0 := 0$. In summary, the crash rate estimated by SCV method is given by

$$\tilde{\mu}_{q_{\alpha},\beta} = \sum_{l=0}^{L} \tilde{\mu}_{l,q_{\alpha},\beta_{l}},$$
(22)

where $\beta = \{\beta_l\}_{l=0}^{L}$ is the set of all control vectors.

B. Optimal Control Parameters

To estimate the optimal control parameters that minimize the estimation variance, the MLR technique is applied in each stratum. For l = 1, ..., L, let $\mathbb{X}_l := \{X_i : X_i \in \mathcal{X}_l, i = 1, ..., n\}$ be the set of sampled scenarios, $n_l := \sum_{i=1}^n \mathbb{I}_{\mathcal{X}_l}(X_i)$ be the number of tests, and $d_l := J^l$ be the number of SCV. Denote the vector of testing results as

$$Y_l := \left[\frac{\mathbb{P}(F|X_i)p(X_i)}{q_{\alpha}(X_i)} \text{ for } X_i \in \mathbb{X}_l\right] \in \mathbb{R}^{n_l}, \qquad (23)$$

and the individual SCV as

$$h'_{j_1,\dots,j_l}(x_c) := \frac{q_{j_1,\dots,j_l}(x_c)}{q_{\alpha}(x_c)} - \sum_{x_c \in \mathcal{X}_l} q_{j_1,\dots,j_l}(x_c), \qquad (24)$$

for l = 1, ..., L. The matrix of individual SCV can be formulated as

$$H_l := \left[\operatorname{vec} \left(h'_{j_1, \dots, j_l}(X_{c, i}) \right) \text{ for } X_i \in \mathbb{X}_l \right] \in \mathbb{R}^{n_l \times d_l}, \quad (25)$$

for l = 1, ..., L. Then the regression formula is given by $Y_l \approx \eta_l + H_l \beta_l$. The MLR of Y_l on H_l is to find the optimal solution of the following optimization problem, i.e.,

$$\min_{\eta_l,\beta_l} \mathcal{L}(\eta_l,\beta_l) = \|Y_l - \eta_l - H_l\beta_l\|_2^2.$$
(26)

Letting the partial derivatives of \mathcal{L} with respect to η_l and β_l both equal to zero, we have $\hat{\eta}_l = 1^{\top} Y_l / n_l$ and $\hat{\beta}_l = (H_l^{\top} H_l)^{-1} H_l^{\top} Y_l$, assuming that the control matrix $M_l :=$ $H_l^{\top} H_l \in \mathbb{R}^{d_l \times d_l}$ is invertible. Then the estimated crash rate is $\hat{\mu}_l = n_l \hat{\eta}_l / n$. In practice, the control matrix may often not be invertible, then we use singular value decomposition (SVD) [35] to compute the regression coefficients $\hat{\beta}_l$. The rank of the control matrix satisfies

$$\operatorname{rank}(M_l) = \operatorname{rank}(H_l) \leqslant \min\{n_l, d_l\}.$$
 (27)

If $n_l < d_l$, then the control matrix M_l will be singular and has utmost n_l nonzero singular values. As the number of tests n_l in \mathbb{X}_l will not grow exponentially with the number of critical variables l, the rank of the control matrix will also not. Therefore, solving the optimal control parameters for SCV is tractable and will not face the CoD. We will further demonstrate this in Subsection VI-E.

C. Discussions for SCV

We note that using the MLR technique is one of the most common ways to use control variates [28]. Other ways might exist, but finding them is out of scope and our approach is complementary to the specific techniques using the control variates. Only one performance index (the crash rate) is studied in this paper, but our method can also be applied for other crash-related indexes such as the probabilities of crash types, crash severities, and near-miss events. For example, in our previous work [2], [23], it is demonstrated that the importance functions used for evaluating crash rate can also be used for evaluating crash-related indexes mentioned above. Therefore, our method can also be applied for adaptive evaluation of these crash-related indexes.

V. THEORETICAL ANALYSIS

This section theoretically justifies the accuracy, efficiency and optimality of the proposed SCV method.

A. Accuracy Analysis

We first prove that the estimation is unbiased.

Theorem 1: Let $\tilde{\mu}_{q_{\alpha},\beta}$ be given by Eq. (22) where $q_{\alpha} > 0$ whenever $\mathbb{P}(F|x)p(x) > 0$, then $\mathbb{E}_{q_{\alpha}}[\tilde{\mu}_{q_{\alpha},\beta}] = \mu$.

Proof: To establish unbiasedness, write

$$\mathbb{E}_{q_{\alpha}}[\tilde{\mu}_{q_{\alpha},\beta}] = \mathbb{E}_{q_{\alpha}}\left[\sum_{l=0}^{L} \tilde{\mu}_{l,q_{\alpha},\beta_{l}}\right]$$
$$= \sum_{l=0}^{L} \mathbb{E}_{q_{\alpha}}\left[\tilde{\mu}_{l,q_{\alpha}} - \frac{\tilde{h}_{l}(X)}{q_{\alpha}(X)}\mathbb{I}_{\mathcal{X}_{l}}(X) + \theta_{l}\right]$$
$$= \sum_{l=0}^{L} (\mu_{l} - \theta_{l} + \theta_{l}) = \mu.$$
(28)

Remark 1: This theorem indicates that the estimation is unbiased if the control parameters β are independent of the sample data. It's worth noting that in practice the control parameters are usually estimated by the sample data, which would bring a bias. However, that bias is ordinarily negligible (please see Section 8.9 in [28] for more discussions).

B. Efficiency Analysis

Next, we evaluate the efficiency of the SCV method. The variance of the estimation $\tilde{\mu}_{q_{\alpha},\beta}$ is $\operatorname{Var}_{q_{\alpha}}(\tilde{\mu}_{q_{\alpha},\beta}) = \sigma_{q_{\alpha},\beta}^2/n$, where $\sigma_{q_{\alpha},\beta}^2$ is the asymptotic variance of $\tilde{\mu}_{q_{\alpha},\beta}$, i.e.,

$$\sigma_{q_{\alpha},\beta}^{2} := \operatorname{Var}_{q_{\alpha}}\left(\sum_{l=0}^{L} \frac{\mathbb{P}(F|X)p(X) - \tilde{h}_{l}(X)}{q_{\alpha}(X)} \mathbb{I}_{\mathcal{X}_{l}}(X)\right) \quad (29)$$

for $X \sim q_{\alpha}$. Denote

$$Z_l := \frac{\mathbb{P}(F|X)p(X) - \tilde{h}_l(X)}{q_\alpha(X)} \mathbb{I}_{\mathcal{X}_l}(X), \ l = 0, \dots, L, \quad (30)$$

then the asymptotic variance $\sigma^2_{q_{\alpha},\beta}$ can be expressed as

$$\sigma_{q_{\alpha},\beta}^{2} = \operatorname{Var}_{q_{\alpha}}\left(\sum_{l=0}^{L} Z_{l}\right) = \mathbb{E}_{q_{\alpha}}\left[\left(\sum_{l=0}^{L} \left[Z_{l} - \mathbb{E}_{q_{\alpha}}[Z_{l}]\right]\right)^{2}\right].$$
(31)

Let L' := L + 1, then by convexity of quadratic function and Jensen's inequality, we have

$$\sigma_{q_{\alpha},\beta}^{2} \leqslant \mathbb{E}_{q_{\alpha}} \left[L' \sum_{l=0}^{L} \left(Z_{l} - \mathbb{E}_{q_{\alpha}}[Z_{l}] \right)^{2} \right] = L' \sum_{l=0}^{L} \operatorname{Var}_{q_{\alpha}}(Z_{l}).$$
(32)

Denote $\sigma_{l,q_{\alpha},\beta_{l}}^{2} := \operatorname{Var}_{q_{\alpha}}(Z_{l})$ and the asymptotic variance of $\tilde{\mu}_{l,q}$ over \mathcal{X}_{l} as $\sigma_{l,q}^{2}$, i.e.,

$$\sigma_{l,q}^{2} := \sum_{x \in \mathcal{X}_{l}} \left(\frac{\mathbb{P}(F|x)p(x)}{q(x)} - \mu_{l} \right)^{2} q(x), \ l = 1, \dots, L,$$
(33)

then we have the following theorem.

Theorem 2: If β^* is any minimizer of $\sigma^2_{q_{\alpha},\beta}$, then

$$r_{q_{\alpha},\beta^{*}}^{2} \leqslant L'\sigma_{0,p,\beta_{0}}^{2}$$

$$+ L'\sum_{l=1}^{L} \min_{j_{1},\dots,j_{l}} \left\{ \frac{\sigma_{l,q_{j_{1},\dots,j_{l}}}^{2}}{\prod_{\ell=1}^{l} \alpha_{j_{\ell}}} + 3\left(\frac{\mu_{l}}{\prod_{\ell=1}^{l} \alpha_{j_{\ell}}}\right)^{2} \right\}.$$

$$(34)$$

Proof: Take $\sigma_{1,q_{\alpha},\beta_1}^2$ as an example. Following the proof in [34], we consider the particular vector β_1 having $\beta_{1,1} = 0$ and $\beta_{1,j} = -\mu_1 \alpha_j / \alpha_1$ for j > 1. Let $r_1(x) := [\mathbb{P}(F|x)p(x) - \mu_1q_1(x)]\mathbb{I}_{\mathcal{X}_1}(x)$, then we have $\sum_{x \in \mathcal{X}} r_1(x) = \mu_1(1-\xi_1)$, where $\xi_1 := \sum_{x \in \mathcal{X}_1} q_1(x), \xi_1 \in [0, 1]$. Substituting these values, we find that for this β_1 ,

$$Z_{1} = \frac{\mathbb{P}(F|X)p(X) - h_{1}(X)}{q_{\alpha}(X)} \mathbb{I}_{\mathcal{X}_{1}}(X)$$

$$= \frac{\mathbb{P}(F|X)p(X) - \mu_{1}q_{1} + \mu_{1}q_{1} - \tilde{h}_{1}(X)}{q_{\alpha}(X)} \mathbb{I}_{\mathcal{X}_{1}}(X)$$

$$= \frac{r_{1}(X)}{q_{\alpha}(X)} + \frac{\mu_{1}}{\alpha_{1}} \mathbb{I}_{\mathcal{X}_{1}}(X), \qquad (35)$$

and $\mathbb{E}_{q_{\alpha}}[Z_1] = \mu_1 \alpha_{1,1} / \alpha_1$, where $\alpha_{1,1} := \alpha_1 + \sum_{j=2}^J \alpha_j$ $\sum_{x \in \mathcal{X}_1} q_j(x), \alpha_{1,1} \in [0, 1]$. Therefore, we have

$$\sigma_{1,q_{\alpha},\beta_{1}}^{2} = \mathbb{E}_{q_{\alpha}} \left[\left(Z_{1} - \mathbb{E}_{q_{\alpha}}[Z_{1}] \right)^{2} \right]$$
$$= \sum_{x \in \mathcal{X}} \left[\frac{r_{1}(x)}{q_{\alpha}(x)} + \frac{\mu_{1}}{\alpha_{1}} \left(\mathbb{I}_{\mathcal{X}_{1}}(x) - \alpha_{1,1} \right) \right]^{2} q_{\alpha}(x)$$
$$=: V_{1,1} + V_{1,2} + V_{1,3}, \tag{36}$$

where

$$V_{1,1} := \sum_{x \in \mathcal{X}} \frac{r_1^2(x)}{q_\alpha(x)} = \sum_{x \in \mathcal{X}} \frac{[\mathbb{P}(F|x)p(x) - \mu_1 q_1(x)]^2}{q_\alpha(x)} \mathbb{I}_{\mathcal{X}_1}(x)$$

$$\leqslant \sum_{x \in \mathcal{X}_1} \frac{[\mathbb{P}(F|x)p(x) - \mu_1 q_1(x)]^2}{\alpha_1 q_1(x)} = \frac{\sigma_{1,q_1}^2}{\alpha_1}, \quad (37)$$

$$= \frac{2\mu_1^2(1-\xi_1)(1-\alpha_{1,1})}{\alpha_1} \leqslant 2\left(\frac{\mu_1}{\alpha_1}\right)^2,$$
(38)

and

$$V_{1,3} := \sum_{x \in \mathcal{X}} \left[\frac{\mu_1(\mathbb{I}_{\mathcal{X}_1}(x) - \alpha_{1,1})}{\alpha_1} \right]^2 q_\alpha(x)$$
$$\leqslant \sum_{x \in \mathcal{X}} \left(\frac{\mu_1}{\alpha_1} \right)^2 q_\alpha(x) = \left(\frac{\mu_1}{\alpha_1} \right)^2. \tag{39}$$

Therefore, we conclude that

$$\sigma_{1,q_{\alpha},\beta_{1}^{*}}^{2} \leqslant \sigma_{1,q_{\alpha},\beta_{1}}^{2} \leqslant \frac{\sigma_{1,q_{1}}^{2}}{\alpha_{1}} + 3\left(\frac{\mu_{1}}{\alpha_{1}}\right)^{2}.$$
 (40)

By making similar arguments for j = 2, ..., J, we have

$$\sigma_{1,q_{\alpha},\beta_{1}^{*}}^{2} \leqslant \min_{j} \left\{ \frac{\sigma_{1,q_{j}}^{2}}{\alpha_{j}} + 3\left(\frac{\mu_{1}}{\alpha_{j}}\right)^{2} \right\}.$$
 (41)

Authorized licensed use limited to: Tsinghua University. Downloaded on February 08,2024 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

It's straightforward to extend the proof for l = 2, ..., L, then Eq. (34) is established.

Remark 2: For l = 1, we expect to get approximately $n_1 \alpha_j$ scenarios in \mathcal{X}_1 from the importance function q_j . The quantity $\sigma_{1,q_j}^2/\alpha_j$ in Eq. (41) is the variance we would obtain from $n_1\alpha_j$ such scenarios alone. It is hard to imagine that we could do better in general, because when $\sigma_{1,q_j}^2 = \infty$ for all but one of the mixture components it is guaranteed that those bad components do not make the estimation worse than what we would have had from the one good importance function. Moreover, if there exists an optimal importance function in q_j , then the minimum value of $\sigma_{1,q_j}^2/\alpha_j$ will be zero, which will greatly reduce the estimation variance. It should be noted that the upper bound for variance in Eq. (41) contains a residual term $3(\mu_1/\alpha_j)^2$, which is the cost for stratifying the scenarios.

C. Optimality Analysis

Under the following assumptions, the estimation variance of the SCV method can be zero.

Assumption 1: The scenarios in \mathcal{X}_0 will not be sampled by q_{α} , i.e., $q_{\alpha}(x) = 0$, $\forall x \in \mathcal{X}_0$.

Assumption 2: The control policy satisfies $|x_c| = 1$, i.e., the number of critical variables of all sampled scenarios is 1.

Assumption 3: There exists an optimal control policy such that $\mathbb{P}(F|x_c) = \mathbb{P}(F|x)$, which means that the critical variable x_c can totally dominate the crash probability.

Assumption 4: There exists an optimal importance function among q_j . Without loss of generality, let q_1 be the optimal importance function, i.e., $q_1(x_c) := \mathbb{P}(F|x_c)p(x_c)/\mu$.

Theorem 3: Under Assumption 1, 2, 3 and 4, if β^* is any minimizer of $\sigma_{q_{\alpha},\beta}^2$, then $\sigma_{q_{\alpha},\beta^*}^2 = 0$.

Proof: From Assumption 1 and 2, we know that all sampled scenarios contain only one critical variable, i.e., $\mathcal{X} = \mathcal{X}_1$ and $\mu = \mu_1$, then

$$Z_1 = \frac{r_1(X)}{q_{\alpha}(X)} + \frac{\mu_1}{\alpha_1} \mathbb{I}_{\mathcal{X}_1}(X) = \frac{r_1(X)}{q_{\alpha}(X)} + \frac{\mu_1}{\alpha_1}, \qquad (42)$$

and $\mathbb{E}_{q_{\alpha}}[Z_1] = \mu_1 \alpha_{1,1} / \alpha_1 = \mu_1 / \alpha_1$. Therefore, the asymptotic variance $\sigma_{1,q_{\alpha},\beta_1}^2$ is given by

$$\sigma_{1,q_{\alpha},\beta_{1}}^{2} = \mathbb{E}_{q_{\alpha}} \left[\left(Z_{1} - \mathbb{E}_{q_{\alpha}}[Z_{1}] \right)^{2} \right]$$
$$= \sum_{x \in \mathcal{X}} \frac{r_{1}^{2}(x)}{q_{\alpha}(x)} \leqslant \frac{\sigma_{1,q_{1}}^{2}}{\alpha_{1}}.$$
(43)

By Assumption 3 and 4, we have $\mathbb{P}(F|x_c) = \mathbb{P}(F|x)$ and $q_1(x_c) = \mathbb{P}(F|x_c)p(x_c)/\mu$, then

$$\sigma_{1,q_1}^2 = \sum_{x \in \mathcal{X}_1} \left(\frac{\mathbb{P}(F|x)p(x)}{q_1(x)} - \mu_1 \right)^2 q_1(x)$$
$$= \sum_{x \in \mathcal{X}} \left(\frac{\mathbb{P}(F|x_c)p(x_c)}{q_1(x_c)} - \mu \right)^2 q_1(x) = 0.$$
(44)

Therefore, we conclude that $\sigma_{q_{\alpha},\beta^*}^2 = \sigma_{1,q_{\alpha},\beta_1}^2 = 0.$ *Remark 3:* Assumption 1 suggests that the scenarios in

Remark 3: Assumption 1 suggests that the scenarios in \mathcal{X}_0 should not be sampled. As there is no crash in these scenarios, sampling these scenarios will decrease estimation

(b) Passing phase of overtaking scenarios (focus of this paper).

Fig. 3. Illustrations of the four phases of overtaking scenarios (a) and the passing phase (Phase II) of overtaking scenarios (b). In overtaking scenarios, the AV will overtake BV and LV. In the passing phase, the AV will pass BV and LV. While AV is passing, BV may cut in to overtake LV.

efficiency. Assumption 2 requires that the number of critical variables is 1, because stratifying scenarios into different strata leads to residual terms (e.g., $3(\mu_1/\alpha_j)^2$ in Eq. (41)) in estimation variance that can not be eliminated. Note that the Assumption 2 is needed just for our method to be optimal. Cases with more critical variables are studied in Theorem 2 and Section VI. Assumption 3 indicates that the critical variables should dominate the crash probability, since otherwise we may lose some critical information about the scenarios and obtain the suboptimal testing results. Assumption 4 requires that one of the importance functions should be optimal. Although in practice these assumptions may not be fully satisfied, they could provide useful guidance for us to implement the SCV method.

Remark 4: The theorems in this section hold regardless of the specifics of SMs, which may be constructed by traditional traffic models or by neural networks.

VI. CASE STUDY

A. Overtaking Scenarios

The overtaking scenarios are illustrated in Fig. 3(a), where the leading vehicle (LV) runs at the left lane, the background vehicle (BV) follows LV and the automated vehicle (AV) will overtake BV and LV. The overtaking process can be divided into four phases [36]: (I) approach and right lane change phase where AV detects a slow-moving BV and changes to the right lane; (II) passing phase in which AV passes the BV and LV; (III) left lane change phase where AV comes back to the left lane; (IV) free-flowing phase in which AV keeps its lane and velocity. In this paper, we focus on the passing phase, as shown in Fig. 3(b). While AV is passing, BV may cut in to overtake LV. If BV cuts in to the right lane, AV will follow BV and may rear-end BV, leading to the crash.

The state of the overtaking scenarios can be formulated as

$$s := (v_{\rm BV}, R_1, \dot{R}_1, R_2, \dot{R}_2),$$
 (45)

where $R_1 := x_{LV} - x_{BV}$, $\dot{R}_1 := v_{LV} - v_{BV}$, $R_2 := x_{BV} - x_{AV}$, and $\dot{R}_2 := v_{BV} - v_{AV}$. The x_{BV} , x_{LV} , x_{AV} are the

positions and v_{BV} , v_{LV} , v_{AV} are the velocities of BV, LV and AV, respectively. The action of the overtaking scenario is defined as the actions of LV and BV, i.e., $a := (a_{LV}, a_{BV})$. We note that the overtaking scenarios are more stochastic and complicated than simple scenarios such as cut-in scenarios and car-following scenarios, since the BV in overtaking scenarios may have many chances to cut in, resulting in different cut-in scenarios and car-following scenarios between BV and AV. This is the reason why overtaking scenarios are always much more high-dimensional than cut-in scenarios.

B. Generation of NDE

The essence of NDE is to provide a driving environment where all BVs travel like humans. To generate NDE, the probability distributions of the behaviors of all BVs should be consistent with the naturalistic driving data (NDD) [31]. In this paper, the naturalistic distributions of free-flowing, carfollowing, and cut-in behaviors are extracted from the NDD of the Safety Pilot Model Deployment (SPMD) [37] program and Integrated Vehicle-Based Safety System (IVBSS) [38] at the University of Michigan, Ann Arbor.

The initial state is set as

$$s_0 = [v_{\rm BV,0}, R_{1,0}, R_{1,0}, R_{2,0}, R_{2,0}],$$
 (46)

where $v_{BV,0}$, $R_{1,0}$, $\dot{R}_{1,0}$ are sampled from the naturalistic distributions of car-following scenarios, $R_{2,0} \sim U(20 \text{ m}, 100 \text{ m})$, $\dot{R}_{2.0} \sim \mathcal{U}(-10 \text{ m/s}, -5 \text{ m/s})$. Here \mathcal{U} represents the uniform distribution. After sampling the initial state, all vehicles select actions independently and simultaneously for each time step (0.1 s). The cut-in maneuver of BV is simplified to be completed within one time step for the convenience of experiments. We note that applying our method in scenarios with more realistic cut-in maneuvers is straightforward. The car-following maneuver of AV is controlled by the intelligent driver model (IDM) [39]. The simulation continues until AV rear-ends BV or the maximum simulation time (20 s) reached. Typically, the dimension of overtaking scenarios will exceed 1400 (201 time steps, each with 5 state variables and 2 action variables), leading to the high-dimensionality challenge. More technical details for the generation of NDE can be found in [23].

C. Generation of NADE

The goal of NADE is to generate high-dimensional testing scenarios where the behaviors of BVs are adjusted only at critical moments, while keeping the naturalistic distribution at other time steps [23]. To identify critical moments and critical variables, the maneuver criticality of BV is evaluated at each time step, which is defined as the multiplication of the exposure frequency and the maneuver challenge [19], [20]. The exposure frequency represents the probability of each action of BV given current state in NDE. The maneuver challenge measures the crash probability between AV and BV given current state and action. The moment where BV's maneuver criticality is larger than a threshold (e.g., 0) is identified as the critical moment. Then the critical variables can be selected as the states and actions at critical

Algorithm 1 Adaptive Safety Evaluation With Sparse Control Variates by Multiple Linear Regression

Input: $p, q_{\alpha}, X_{c,i}$, and $\mathbb{P}(F|X_i), i = 1, \ldots, n$ **Output**: $\tilde{\mu}_{q_{\alpha},\hat{\beta}}$, $\operatorname{Var}_{q_{\alpha}}(\tilde{\mu}_{q_{\alpha},\hat{\beta}})$ 1 initialize Y_l and H_l as empty arrays, l = 0, ..., L; 2 initialize $n_l = 0, l = 0, ..., L$; 3 for $i \leftarrow 1$ to n do $l \leftarrow$ number of critical variables of $X_{c,i}$; 4 $n_l \leftarrow n_l + 1;$ 5 if l = 0 then 6 append Y_l with $\mathbb{P}(F|X_i)$; 7 append H_l with 0; 8 else 9 append Y_l with $\mathbb{P}(F|X_i)p(X_{c,i})/q_{\alpha}(X_{c,i})$; 10 append H_l with $\operatorname{vec}(q_{j_1,\ldots,j_l}(X_{c,i})/q_{\alpha}(X_{c,i}))$, 11 $j_1, \ldots, j_l = 1, \ldots, J - 1;$ end 12 13 end 14 for $l \leftarrow 0$ to L do $H_l \leftarrow H_l - \operatorname{average}(H_l);$ 15 16 MLR \leftarrow multiple linear regression of Y_l on H_l ; $\hat{\beta}_l \leftarrow$ estimated coefficients from MLR; 17 $\hat{\eta}_l \leftarrow \text{estimated intercept from MLR};$ 18 $\left| \tilde{\mu}_{l,q_{\alpha},\hat{\beta}_{l}} \leftarrow n_{l}\hat{\eta}_{l}/n, Z_{l} \leftarrow Y_{l} - H_{l}\hat{\beta}_{l}; \right.$ 19 20 end 21 $Z \leftarrow [Z_0, \ldots, Z_L];$ 22 $\tilde{\mu}_{q_{\alpha},\hat{\beta}} \leftarrow \sum_{l=0}^{L} \tilde{\mu}_{l,q_{\alpha},\hat{\beta}_{l}}, \operatorname{Var}_{q_{\alpha}}(\tilde{\mu}_{q_{\alpha},\hat{\beta}}) \leftarrow \operatorname{Var}(Z);$ 23 return $\tilde{\mu}_{q_{\alpha},\hat{\beta}}, \operatorname{Var}_{q_{\alpha}}(\tilde{\mu}_{q_{\alpha},\hat{\beta}});$

moments. We note that many other safety metrics [40] are also applicable for identifying the critical moments and critical variables [2].

As the AVs under test are usually black-boxes, we use SMs to approximate their maneuver challenges. In this paper, the IDM and full velocity difference model (FVDM) [39] are adopted as SMs: (1) IDM, denoted as SM-I; (2) FVDM with $a_{\min} = -1 \text{ m/s}^2$, denoted as SM-II; (3) FVDM with $a_{\min} = -6 \text{ m/s}^2$, denoted as SM-III. According to defensive IS [28], the importance functions can be constructed as the weighted average of the exposure frequency and the normalized maneuver criticality. Then the NADE can be generated by sampling actions of BV from importance functions at critical moments, while keeping naturalistic distribution at other time steps. Readers can find more technical details for the generation of NADE in [23].

D. Application of SCV

As shown in Algorithm 1, the SCV method can be applied to adjust the testing results and reduce estimation variance after testing AV in NADE. The key is to use importance functions of only sparse but critical variables to construct SCV, and then optimize SCV in each stratum by MLR. Finally, the estimated crash rate is given by the summation of evaluation results in each stratum with the proportion weights.

Fig. 4. Crash rates of AV estimated in NDE and NADE, where the ground truth is the crash rate estimated by NDE with 3×10^8 number of tests.

E. Evaluation Results

We validate the accuracy and efficiency of AV evaluation in NDE and NADE by the simulation of overtaking scenarios. The simulation is parallelly conducted using 100 threads on a computer equipped with AMD® EPYCTM 7742 CPU and 512 GB RAM. Fig. 4 shows the crash rates of AV in NDE and NADE, respectively. The crash rate in NDE is presented as the black line in Fig. 4, with the bottom x-axis as its number of tests. The blue line in Fig. 4 represents the crash rate in NADE, and the top x-axis is the number of tests. The light shadow gives the 90% confidence interval. It can be seen that the crash rates in NDE and NADE converge to the same value, while NADE requires a much smaller number of tests. To measure the estimation precision of the crash rate, the relative half-width (RHW) [21] is adopted as the metric. The threshold of RHW is set to 0.3. To reach this threshold, NADE requires 6.76×10^6 number of tests, while NDE requires 1.21×10^8 number of tests, as shown in Fig. 5. Therefore, NADE can accelerate the evaluation process by about 17.90 times compared with NDE. We note that the acceleration ratio is smaller than that in [23], because combinations of multiple various SMs are applied in this paper, which improves the robustness yet decreases the efficiency. The goal of the adaptive evaluation is to improve the efficiency while keeping the robustness.

To investigate the performance of the SCV method, the accuracy and efficiency of AV evaluation in NADE with and without SCV are compared. It can be seen in Fig. 6(a)-(e) that the crash rates of NADE and SCV converge to the same value for different number of tests. Fig. 6(f) shows that the required numbers of tests (RNoT) of NADE and SCV for reaching the RHW threshold are 6.76×10^6 and 5.92×10^5 , respectively, resulting in a further acceleration ratio of 11.42. The weighted testing results before and after being adjusted by SCV with different number of critical variables are compared in Fig. 7(a)-(i), and Fig. 7(j) shows the total 10^7 adjusted testing results. It can be seen that the SCV method is able to adjust the testing results into a much narrower interval, especially for relatively large number of critical variables

Fig. 5. RHW of AV evaluation in NDE and NADE, where the dashed line represents the RHW threshold (0.3).

TABLE II

AARs of SCV Where AV Admits IDMs with Different a_{max} (m/s²), and the Rightmost Column Corresponds to the VT-IDM

a_{\max}	0.5	1.0	1.5	2.0	2.5	3.0	VT-IDM
AAR	11.52	9.02	7.87	6.76	7.73	10.90	7.30
a _{max}	3.5	4.0	4.5	5.0	5.5	6.0	
AAR	13.44	11.95	11.12	10.61	10.45	10.05	

(e.g., $l \ge 4$), resulting in a considerable reduction of the estimation variance. To investigate the computational time complexity of SCV, we conduct the experiments for 10 times to obtain the average wall-clock time (AWT). For the required number of tests 5.92×10^5 , the AWT used by SCV is 213.31 s.

The detailed regression processes of the SCV method are also investigated. Fig. 8 shows the number of tests, the number of SCV and the maximum rank of the control matrices for the number of critical variables l = 1, ..., 9, respectively. Note that for $l \ge 10$, we only use the first 9 critical variables to construct the SCV. It can be seen that the maximum number of tests appears at l = 6 and then the number of tests decreases to a relatively low level. As shown in Eq. (27), the maximum rank of the control matrices is the minimum value between the number of tests and the number of SCV, and hence will not grow exponentially with the number of critical variables, although the number of SCV will do. Therefore, the SVD of control matrices is always tractable in each stratum and the optimal control parameters can be found to minimize the estimation variance.

Due to the stochasticity of scenario generation processes, the testing results are usually not the same in different experiments. Therefore, to find the average performances, we bootstrap the testing results by shuffling them 200 times and obtain the frequency distributions of the RNoT in NDE and NADE. The average RNoT of NDE and NADE are 1.20×10^8 and 8.71×10^6 , respectively. Therefore, the average acceleration ratio (AAR) of NADE with respect to NDE is 13.78. The testing results of SCV are also bootstrapped by 200 times. For cases with maximum RHW below 0.3, we use the RNoT when the maximum RHW is reached. The average RNoT of SCV is 1.29×10^6 , resulting in an AAR of 6.76 times compared with NADE.

Fig. 6. Crash rates of AV using NADE and SCV for (a) $n = 5.92 \times 10^5$, (b) $n = 1.29 \times 10^6$, (c) $n = 4 \times 10^6$, (d) $n = 7 \times 10^6$ and (e) $n = 1 \times 10^7$, where *n* is the total number of tests and the dashed line is the crash rate estimated by NDE; (f) RHW of AV evaluation using NADE and SCV, where the dashed line in black represents the RHW threshold (0.3) and 5 dashed lines in orange correspond to (a)-(e).

Fig. 7. Adjusted testing results by NADE and SCV for (a)-(i) the number of critical variables (l) from 1 to 9 and (j) total 10⁷ testing results.

F. Generalizability Analysis

In the above experiments, we have set the AV model the same as SM-I, i.e., they are both IDMs with same parameters. To investigate the generalizability of the SCV method for different AV models, the IDMs with different maximum accelerations $a_{\text{max}} \in \{0.5, 1.0, \dots, 6.0\}$ m/s² are chosen as

AV models. The AARs of SCV compared with NADE are shown in Table II. The testing results of all AV models are shuffled 200 times to compute the AARs. It can be seen that the minimum AAR appears at $a_{max} = 2.0 \text{ m/s}^2$, where the AV model is the same as SM-I, while the maximum AAR appears at $a_{max} = 3.5 \text{ m/s}^2$. The mean AAR for different AV models is 10.12. Therefore, the SCV method can further accelerate

Fig. 8. Number of tests, number of SCV and maximum rank of control matrices for different number of critical variables.

the evaluation process by about one order of magnitude for various types of AV models. Moreover, the AARs of SCV with AV models different from SM-I are always larger than that of AV model the same as SM-I. The reason is that although using AV models different from SM-I will do harm to both the estimation efficiency of NADE and SCV, the damage to NADE is more than to SCV.

In addition, we also select the calibrated IDM in [41] (denoted as VT-IDM) as the AV model to further validate the generalization performance of the SCV method. The testing results shuffled 200 times give an AAR of 7.30 for SCV compared with NADE, which is shown at the rightmost column in Table II. Therefore, the SCV method can also increase the estimation efficiency considerably for AV model with completely different calibrated parameters. This is not a surprising result because the only requirement for the SCV method to work is that the SMs and the AV model have some correlation, and more correlation contributes to more variance reduction. Although the VT-IDM and IDM have totally different parameters, they are still correlated to some extent.

VII. CONCLUSION

In this paper, we propose an adaptive safety evaluation framework for CAVs in high-dimensional scenarios with a newly developed SCV method. To address the CoD, the SCV are constructed by only considering the sparse but critical variables of testing scenarios and stratified into strata accordingly. By optimizing the SCV leveraging the testing results within each stratum, the estimation variance is significantly reduced for different CAVs adaptively, accelerating the evaluation process. The accuracy, efficiency and optimality of the proposed method are verified and validated by both theoretical analysis and empirical studies. Comparing with the evaluation efficiency in NDE and NADE, our method is always more efficient, particularly for CAVs that are different from SMs.

One limitation of this work is that the case study has several simplifications (e.g., only overtaking scenarios) for the convenience of experiments. How to extend our approach for more complex scenarios deserves further investigation. Moreover, this work only focuses on adaptive testing result evaluation without considering adaptive testing scenario generation. How to integrate both methods in highdimensional scenarios is also an important research topic.

REFERENCES

- N. Kalra and S. M. Paddock, "Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?" *Transp. Res. A, Policy Pract.*, vol. 94, pp. 182–193, Dec. 2016.
- [2] S. Feng et al., "Dense reinforcement learning for safety validation of autonomous vehicles," *Nature*, vol. 615, no. 7953, pp. 620–627, Mar. 2023.
- [3] X. Yan, Z. Zou, S. Feng, H. Zhu, H. Sun, and H. X. Liu, "Learning naturalistic driving environment with statistical realism," *Nature Commun.*, vol. 14, no. 1, p. 2037, Apr. 2023.
- [4] A. Li, S. Chen, L. Sun, N. Zheng, M. Tomizuka, and W. Zhan, "SceGene: Bio-inspired traffic scenario generation for autonomous driving testing," *IEEE Trans. Intell. Transp. Syst.*, vol. 23, no. 9, pp. 14859–14874, Sep. 2022.
- [5] J. Wang et al., "AdvSim: Generating safety-critical scenarios for selfdriving vehicles," in *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.*, Jun. 2021, pp. 9909–9918.
- [6] T. Menzel, G. Bagschik, and M. Maurer, "Scenarios for development, test and validation of automated vehicles," in *Proc. IEEE Intell. Vehicles Symp.* (IV), Jun. 2018, pp. 1821–1827.
- [7] Y. Tian, K. Pei, S. Jana, and B. Ray, "DeepTest: Automated testing of deep-neural-network-driven autonomous cars," in *Proc. IEEE/ACM 40th Int. Conf. Softw. Eng. (ICSE)*, May 2018, pp. 303–314.
- [8] D. Rempe, J. Philion, L. J. Guibas, S. Fidler, and O. Litany, "Generating useful accident-prone driving scenarios via a learned traffic prior," in *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.*, Jul. 2022, pp. 17305–17315.
- [9] L. Li, W.-L. Huang, Y. Liu, N.-N. Zheng, and F.-Y. Wang, "Intelligence testing for autonomous vehicles: A new approach," *IEEE Trans. Intell. Vehicles*, vol. 1, no. 2, pp. 158–166, Jun. 2016.
- [10] L. Li et al., "Artificial intelligence test: A case study of intelligent vehicles," Artif. Intell. Rev., vol. 50, no. 3, pp. 441–465, Oct. 2018.
- [11] L. Li et al., "Parallel testing of vehicle intelligence via virtual-real interaction," *Sci. Robot.*, vol. 4, no. 28, Mar. 2019, Art. no. eaaw4106.
- [12] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer, "Survey on scenario-based safety assessment of automated vehicles," *IEEE Access*, vol. 8, pp. 87456–87477, 2020.
- [13] G. E. Mullins, P. G. Stankiewicz, R. C. Hawthorne, and S. K. Gupta, "Adaptive generation of challenging scenarios for testing and evaluation of autonomous vehicles," *J. Syst. Softw.*, vol. 137, pp. 197–215, Mar. 2018.
- [14] M. Koren, S. Alsaif, R. Lee, and M. J. Kochenderfer, "Adaptive stress testing for autonomous vehicles," in *Proc. IEEE Intell. Vehicles Symp.* (*IV*), Jul. 2018, pp. 1–7.
- [15] S. Feng, Y. Feng, H. Sun, Y. Zhang, and H. X. Liu, "Testing scenario library generation for connected and automated vehicles: An adaptive framework," *IEEE Trans. Intell. Transp. Syst.*, vol. 23, no. 2, pp. 1213–1222, Feb. 2022.
- [16] J. Sun, H. Zhou, H. Xi, H. Zhang, and Y. Tian, "Adaptive design of experiments for safety evaluation of automated vehicles," *IEEE Trans. Intell. Transp. Syst.*, vol. 23, no. 9, pp. 14497–14508, Sep. 2021.
- [17] H. X. Liu and S. Feng, "'Curse of rarity' for autonomous vehicles," 2022, arXiv:2207.02749.
- [18] S. Feng, Y. Feng, X. Yan, S. Shen, S. Xu, and H. X. Liu, "Safety assessment of highly automated driving systems in test tracks: A new framework," *Accident Anal. Prevention*, vol. 144, Sep. 2020, Art. no. 105664.
- [19] S. Feng, Y. Feng, C. Yu, Y. Zhang, and H. X. Liu, "Testing scenario library generation for connected and automated vehicles, Part I: Methodology," *IEEE Trans. Intell. Transp. Syst.*, vol. 22, no. 3, pp. 1573–1582, Mar. 2021.
- [20] S. Feng, Y. Feng, H. Sun, S. Bao, Y. Zhang, and H. X. Liu, "Testing scenario library generation for connected and automated vehicles, Part II: Case studies," *IEEE Trans. Intell. Transp. Syst.*, vol. 22, no. 9, pp. 5635–5647, Sep. 2021.
- [21] D. Zhao et al., "Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques," *IEEE Trans. Intell. Transp. Syst.*, vol. 18, no. 3, pp. 595–607, Mar. 2017.

- [22] D. Zhao, X. Huang, H. Peng, H. Lam, and D. J. LeBlanc, "Accelerated evaluation of automated vehicles in car-following maneuvers," *IEEE Trans. Intell. Transp. Syst.*, vol. 19, no. 3, pp. 733–744, Mar. 2017.
- [23] S. Feng, X. Yan, H. Sun, Y. Feng, and H. X. Liu, "Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment," *Nature Commun.*, vol. 12, no. 1, pp. 1–14, Feb. 2021.
- [24] R. Y. Rubinstein and R. Marcus, "Efficiency of multivariate control variates in Monte Carlo simulation," *Operations Res.*, vol. 33, no. 3, pp. 661–677, Jun. 1985.
- [25] W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud, "Backpropagation through the void: Optimizing control variates for black-box gradient estimation," in *Proc. Int. Conf. Learn. Represent.*, 2018, pp. 1–17.
- [26] C.-A. Cheng, X. Yan, and B. Boots, "Trajectory-wise control variates for variance reduction in policy gradient methods," in *Proc. Conf. Robot Learn.*, 2020, pp. 1379–1394.
- [27] A. Shapiro, "Monte Carlo sampling methods," Handbooks Oper. Res. Manage. Sci., vol. 10, no. 3, pp. 353–425, Dec. 2003.
- [28] A. B. Owen, Monte Carlo Theory, Methods and Examples. Stanford, CA, USA: Stanford University, 2013.
- [29] D. J. Olive, "Multiple linear regression," in *Linear Regression*. Cham, Switzerland: Springer, 2017, pp. 17–83.
- [30] J. Yang, H. He, Y. Zhang, S. Feng, and H. X. Liu, "Adaptive testing for connected and automated vehicles with sparse control variates in overtaking scenarios," in *Proc. IEEE Int. Intell. Transp. Syst. Conf.* (*ITSC*), Oct. 2022, pp. 2791–2797.
- [31] X. Yan, S. Feng, H. Sun, and H. X. Liu, "Distributionally consistent simulation of naturalistic driving environment for autonomous vehicle testing," 2021, arXiv:2101.02828.
- [32] R. Lowe et al., "Multi-agent actor-critic for mixed cooperativecompetitive environments," in *Proc. Adv. Neural Inf. Process. Syst.*, vol. 30, 2017, pp. 1–12.
- [33] S. K. Au and J. L. Beck, "Important sampling in high dimensions," *Structural Saf.*, vol. 25, no. 2, pp. 139–163, Apr. 2003.
- [34] A. Owen and Y. Zhou, "Safe and effective importance sampling," J. Amer. Stat. Assoc., vol. 95, no. 449, pp. 135–143, Mar. 2000.
- [35] M. E. Wall, A. Rechtsteiner, and L. M. Rocha, "Singular value decomposition and principal component analysis," in *A Practical Approach to Microarray Data Analysis*. Cham, Switzerland: Springer, 2003, pp. 91–109.
- [36] A. S. Tomar, A. Forrai, and F. Tillema, "Automated highway overtaking: A perspective from decision-making," SAE, Warrendale, PA, USA, Tech. Rep. 2021-01-0127, 2021.
- [37] D. Bezzina and J. Sayer, "Safety pilot model deployment: Test conductor team report," Nat. Highway Traffic Saf. Admin., Washington, DC, USA, Tech. Rep. DOT HS 812 171, p. 18, 2014.
- [38] J. Sayer et al., "Integrated vehicle-based safety systems field operational test: Final program report," Joint Program Office Intell. Transp. Syst., Univ. Michigan Transp. Res. Inst. (UMTRI), Ann Arbor, MI, USA, Tech. Rep. FHWA-JPO-11-150, 2011.
- [39] J. W. Ro, P. S. Roop, A. Malik, and P. Ranjitkar, "A formal approach for modeling and simulation of human car-following behavior," *IEEE Trans. Intell. Transp. Syst.*, vol. 19, no. 2, pp. 639–648, Feb. 2018.
- [40] A. Arun, M. M. Haque, A. Bhaskar, S. Washington, and T. Sayed, "A systematic mapping review of surrogate safety assessment using traffic conflict techniques," *Accident Anal. Prevention*, vol. 153, Apr. 2021, Art. no. 106016.
- [41] J. Sangster, H. Rakha, and J. Du, "Application of naturalistic driving data to modeling of driver car-following behavior," *Transp. Res. Rec.*, *J. Transp. Res. Board*, vol. 2390, no. 1, pp. 20–33, Jan. 2013.

Jingxuan Yang received the bachelor's degree from the School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China, in 2020. He is currently pursuing the Ph.D. degree with the Department of Automation, Tsinghua University, Beijing, China. His current research interests include adaptive testing and evaluation of connected and automated vehicles.

Haowei Sun received the bachelor's degree from the Department of Automation, Tsinghua University, China, in 2019. He visited the University of Michigan for a summer research internship in 2018. He is currently a Graduate Student with the Department of Civil and Environmental Engineering, University of Michigan. His research interests include intelligent transportation, optimization method, and deep reinforcement learning.

Yi Zhang (Member, IEEE) received the B.S. and M.S. degrees from Tsinghua University, China, in 1986 and 1988, respectively, and the Ph.D. degree from the University of Strathclyde, U.K., in 1995. He is currently a Professor of control science and engineering with Tsinghua University. His current research interests include intelligent transportation systems, intelligent vehicle-infrastructure cooperative systems, analysis of urban transportation systems, urban road network management, traffic data fusion and dissemination, urban traffic control

and management, advanced control theory and applications, advanced detection and measurement, as well as systems engineering.

Henry X. Liu (Member, IEEE) received the bachelor's degree in automotive engineering from Tsinghua University, China, in 1993, and the Ph.D. degree in civil and environment engineering from the University of Wisconsin–Madison in 2000. He is currently the Director of Mcity and a Professor of civil and environmental engineering with the University of Michigan, Ann Arbor, MI, USA. He is also the Director of the Center for Connected and Automated Transportation (USDOT Region 5 University Transportation Center) and

a Research Professor with the University of Michigan Transportation Research Institute. He conducts interdisciplinary research at the interface of transportation engineering, automotive engineering, and artificial intelligence. Specifically, his scholarly interests concern traffic flow monitoring, modeling, and control, as well as training and testing of connected and automated vehicles. He has published more than 130 refereed journal articles and his work have been widely recognized in the public media for promoting smart transportation innovations. He is also the Managing Editor of *Journal of Intelligent Transportation Systems*.

Shuo Feng (Member, IEEE) received the bachelor's and Ph.D. degrees from the Department of Automation, Tsinghua University, China, in 2014 and 2019, respectively. He was a Post-Doctoral Research Fellow with the Department of Civil and Environmental Engineering and also an Assistant Research Scientist with the University of Michigan Transportation Research Institute (UMTRI), University of Michigan, Ann Arbor, MI, USA. He is currently an Assistant Professor with the Department of Automation, Tsinghua University. His research

interests include the development and validation of safety-critical machine learning, particularly for connected and automated vehicles. He was a recipient of the Best Ph.D. Dissertation Award from the IEEE Intelligent Transportation Systems Society in 2020 and the ITS Best Paper Award from the INFORMS TSL Society in 2021. He is an Associate Editor of the IEEE TRANSACTIONS ON INTELLIGENT VEHICLES and an Academic Editor of *Automotive Innovation*.